Abhandlungen
aus dem
Westfälischen Museum
für Naturkunde

61. Jahrgang · 1999 · Heft 1

Martin Vest

Auswirkungen städtischer und ländlicher
Einflußnahmen auf ein urbanes (Still-)Gewässer,
dargestellt am Beispiel des Aasees
in Münster (Westf.)

Westfälisches Museum für Naturkunde Münster
Martin Vest

Auswirkungen städtischer und ländlicher Einflußnahmen auf ein urbanes (Still-)Gewässer, dargestellt am Beispiel des Aasees in Münster (Westf.)
Auswirkungen städtischer und ländlicher Einflußnahmen auf ein urbanes (Still-)Gewässer, darge stellt am Beispiel des Aasees in Münster (Westf.)

Martin Vest, Münster

Inhaltsverzeichnis

1. Einleitung .. 4
2. Untersuchungsgebiet 6
 2.1 Lage und Größe 6
 2.2 Geologie .. 6
 2.3 Klima ... 8
 2.4 Hydrologie 8
 2.5 Geschichtliche Entwicklung des Aasees 10
 2.6 Nutzungsinteressen 11
3. Material und Methoden 14
 3.1 Probenahmestellen 14
 3.1.1 Aasee 14
 3.1.2 Fließgewässer 14
 3.2 Wasseranalytik 14
 3.3 Ermittlung von Fließgeschwindigkeit, Abflußmenge, Fracht u. Bilanz . 18
 3.4 Ermittlung der Wasseraufenthaltszeit des Aaseewassers (Verweildauer) 20
 3.5 Sedimentuntersuchung 20
 3.5.1 Schwermetallanalytik 20
 3.5.2 Rücklösung 21
 3.6 Planktonuntersuchung 23
 3.7 Makrozoobenthonuntersuchung 23
 3.7.1 Aasee 23
 3.7.2 Fließgewässer 24
4. Ergebnisse ... 26
 4.1 Ergebnisse der Untersuchung Aasee 26
 4.1.1 Wasseraufenthaltszeit des Aaseewassers (Verweildauer) 26
 4.1.2 Wasseranalysen (Jahresgänge) 26
 4.1.3 Wasseranalysen (Tagesgänge) 41
 4.1.4 Schwermetallanalysen (Sediment) 43
 4.1.5 Remobilisierungspotential des im Gewässersediment deponierten Phosphors 45
 4.1.6 Plankton 48
 4.1.7 Makrozoobenthon 60

* Dissertation aus dem Institut für Zoophysiologie der Universität Münster; Betreuung Prof. Dr. B. Surholt; gefördert durch die Stadt Münster im Rahmen des „Aasee-Forschungsprojektes“.
1. Einleitung

- Stärkere Wassertrübung, Wasserblüten durch Planktonalgen,
- Verstärkung der Tag-Nacht-Schwankungen der Konzentrationen von Sauerstoff, Ammonium, Kohlensäure sowie des pH-Wertes im Epilimnion,
- höhere Konzentrationen algenbürtiger Schadstoffe, die geruchs- und geschmacksintensiv sind,
- Sauerstoffmangel am Gewässerboden,
- Mobilisierung von Eisen und Mangan aus dem Sediment infolge anaerober Verhältnisse,
- Remobilisierung von im Sediment chemisch gebundenem Phosphat und damit Verstärkung des Eutrophierungsprozesses,
- Veränderungen der Biozönose von Phytoplankton und Zooplankton, des Benthos sowie der Fischfauna, Auftreten zusätzlicher Planktonmaxima.

Insbesondere für urbane Stillgewässer sind die o.g. Symptome typisch und kennzeichnend für ihren häufig hoch eutrophen Zustand. Sie sind keine natürlichen, sondern künstlich, vom Menschen geschaffene oder stark veränderte Gewässer. Meistens fehlt ihnen der gesamte Lebensraum eines zonierten Litorals sowie dessen Biozönose.

Münsters Aasee ist ein solches Gewässer.

Als aquatisches Ökosystem mußte der Aasee und sein Einzugsgebiet schwerpunktmäßig aus Sicht der Limnologie erforscht werden. Hierbei galt es, die Ursachen für vorhandene Beeinträchtigungen zu lokalisieren, ihre Belastungspfade aufzuzeigen und die verschie-
denen Belastungsarten zu quantifizieren, zu bewerten und zu diskutieren. Um diese den unterschiedlichen Kausalzirkelkomplexen zuordnen zu können, wurden folgende Untersuchungsschwerpunkte gesetzt:

1. Das obere liegende Gewässereinzugsgebiet, welches potentiell als Quelle von Ionen und Sedimenten in Frage kommt.
2. Die intern ablaufenden Stoffwechselvorgänge des Aasees selbst.

Gleichzeitig erfolgt erstmalig eine Charakterisierung des Münsterschen Aasee unter gewässertypologischen Gesichtspunkten.

2. Untersuchungsgebiet

2.1 Lage und Größe

Das Untersuchungsgebiet gehört dem Großraum der Westfälischen Bucht an. Die Fließstrecke der Münsterschen Aa beträgt vom Quellgebiet in den Baumbergen (115 bis 150 m NN) bis zur Mündung in den Aasee auf münsterischem Stadtgebiet (55 m NN) 21 km. Das Gewässereinzugsgebiet der Münsterschen Aa hat in Höhe der Gievenbachmündung eine Ausdehnung von 103,33 km². Davon entfallen 11,47 km² auf den 8,5 km langen Meckelbach und 6,73 km² auf den 7,1 km langen Gievenbach (STAWA Münster 1994).

Der von SW (3404 RW, 5757 HW) nach NE (3405 RW 5759 HW) orientierte und auf münsterischem Stadtgebiet befindliche Aasee ist 2.300 m lang und 280 m breit. Er bedeckt ein Areal von insgesamt 40,2 ha (STADT MÜNSTER 1992a). Die mittlere Seetiefe des Aasees liegt bei 1,9 m, die maximale bei 2,0 m (Abb. 1). Hieraus ergibt sich ein Seevolumen von insgesamt 763.800 m³.

2.2 Geologie

Abb. 1: Morphometrie des Münsterschen Aasees (erstellt in Zusammenarbeit mit STAWA Münster).
2.3 Klima

Die aktuelle Verdunstungshöhe liegt im Münsterländer Becken etwa bei 475 mm pro Jahr; die mittlere jährliche Verdunstungshöhe aus der Wasserbilanz (1959 - 1978) beträgt 455 bzw. 522 mm (STRUCKMEIER 1990). Die durchschnittliche Jahrestemperatur bewegt sich zwischen 9,0 und 9,5 °C (DAHM-AHRENS 1975).

Der Raum zeichnet sich also durch ein typisch ozeanisches und niederschlagsreiches Klima aus. Diese Bedingungen finden sich prinzipiell auch im Lokalbereich des Münsterschen Aasees wieder. Der Aasee hat darüber hinaus durch seine nach Südwesten offene Flanke und durch die o.g. vorwiegenden Windverhältnisse die Wirkung eines Windkanals.

Die speziellen klimatischen Verhältnisse im Untersuchungszeitraum (Dezember 1992 bis September 1994) zeigen die Abb. 2 - 4.

Die Jahrestemperatur lag 1993 mit 9,4 °C im Bereich des langjährigen Mittels (Abb. 3) und die Globalstrahlung erreichte eine mittlere Intensität von 10,4 mW/cm² (Abb. 4).

2.4 Hydrologie

In der Osthälfte der Baumberge, westlich des Ortes Havixbeck, befindet sich die Quellregion der Münsterschen Aa. Sie setzt sich aus den Quellgebieten des Krummen Baches (Hauptquellen: 125 u. 150 m NN), der Poppenbecker Aa (Hauptquelle: 125 m NN) und des Hangsbaches (Hauptquellen: 115 u. 120 m NN) zusammen. Dieses Fließgewässersystem entwässert in östliche Richtung. In Höhe der Hoflage „Haus Klute“ nordwestlich von Havixbeck wird das resultierende Fließgewässer als „Münstersche Aa“ bezeichnet. Diese fließt zunächst weiter in östlicher Richtung, passiert die Bauerschaft Hohenholte.
Abb. 2: Niederschlag (Tagessummen/Monatsmittel) im Untersuchungszeitraum von Dezember 1992 bis September 1994 [mm].

Abb. 3: Lufttemperatur (Tages-/Monatsmittel) im Untersuchungszeitraum von Dezember 1992 bis September 1994 [°C].

Abb. 4: Globalstrahlung (Tages-/Monatsmittel) im Untersuchungszeitraum von Dezember 1992 bis September 1994 [mW/cm²].

Das Einzugsgebiet der Münsterschen Aa hat eine Gesamtgröße von 172,23 km² (STAWA MÜNSTER 1994).

Im Winterhalbjahr kommt es vor allem in der Ebene, nach länger andauernden Niederschlägen und nachdem die Schneeschmelze eingesetzt hat, zu Überschwemmungen der Talaue der Münsterschen Aa. Dabei werden die Sande der Aa in den Flutmulden abgelagert.

Die Böden der Talaue zeichnen sich durch relativ hohe Grundwasserstände aus, so daß hier immer recht feuchte Verhältnisse vorgefunden werden. Daher werden die undrainierten Flächen teilweise auch heute noch als mehr oder weniger extensiv bewirtschaftetes Grünland genutzt.

2.5 Geschichtliche Entwicklung des Aasees

Die Hochwassereignisse in den Wintern 1993/94 und 1994/95 (s. Abb. 5), die die oberhalb des heutigen Aasees liegende Niederung der Münsterschen Aa trotz Gewässerausbau in eine Seenlandschaft verwandelten, vermitteln in etwa eine gewisse Vorstellung der Verhältnisse von damals, als Münster durch seinen Fürstbischof belagert wurde. Sie demonstrieren jedoch auch, daß die Fließgewässer sich im Extremfall ihre durch Gewässerausbau genommenen Rententionsräume, die ehemaligen Auen, „zurückholen“.

Der Aasee befindet sich im Bereich der ehemaligen Gewässeraue der Münsterschen Aa.
2.6 Nutzungsinteressen

Zu den weniger sichtbaren Nutzungsarten gehört die Funktion des Aasees als Regenwassersammelbecken. Große Teile der versiegelten Flächen im Innenstadtbereich von Münster (ca. 290 ha) entwässern ihr Niederschlagswasser über die Regenwasserkanalisation in den 40,2 ha großen Aasee (s. Abb. 6, vgl. STADT MÜNSTER 1992). Die darin befindlichen Substanzen, z. B. die Rückstände des Individualverkehrs, Streusalze, tensidartige Verbindungen aus Reinigungsmitteln, Schwermetalle u. a. m. werden dem Aasee auf diesem Wege ebenfalls zugeführt.

Eine lokale Besonderheit stellt die Inanspruchnahme des Aasees als Komfortgewässer für Möwen - insbesondere der Lachmöwe (Larus ridibundus) - dar (PEITZMEIER 1979, VEST 1996). Dieses Phänomen ist vorwiegend während der winterlichen Ruhephase der Möwen.
zu beobachten. Der entsprechende Nährstoffeintrag hängt hierbei von der Individuenmenge (zeitweise bis zu 10.000 Exemplaren) und der Verweildauer der Möwen ab. Von besonderer Bedeutung ist das vorgeschaltete Gewässereinzugsgebiet des Aasees mit seinen vorherrschenden Nutzungsformen. Hier sind vor allem die diffusen Nährstoff- und Pestizideinträge aus der Landwirtschaft sowie die punktuellen Einleitungen aus kommunalen Kläranlagen und privaten Kleinkläranlagen zu nennen.

Abb. 7: Lageplan der Probenahmestellen im Münsterschen Aasee.

Abb. 8: Lageplan der Sedimentprobenahmestellen im Münsterschen Aasee.
3. Material und Methoden

3.1 Probenahmestellen

3.1.1 Aasee

Für die physikalischen und hydrochemischen Analysen wurde das Pelagial des Aasees an 7 Stellen untersucht (Abb. 7). Drei davon sind Profilmeßpunkte, an denen Proben in 50, 100 und 150 cm Wassertiefe genommen wurden, sodaß je Probengang insgesamt 13 Proben gezogen wurden.

An der Stelle SCM (Steg am Segelclub Münster) wurden gleichzeitig auch die meisten Planktonproben sowie die Proben für die Tagesgang-Analytik entnommen.

Auch die Beprobung der in den Aasee mündenden Regenwasserkanalisation wurde durchgeführt. Für eine Bilanzierung wären allerdings weitere Untersuchungen wünschenswert, sodaß die hiermit verknüpften Fragen im Detail an dieser Stelle nicht weiter ausgeführt wurden (näheres s. VEST 1997).

3.1.2 Fließgewässer

Die Probenahmestellen der Fließgewässer liegen in der Münsterschen Aa, dem Meckelbach und dem Gievenbach; hinzu kommen verschiedene Einleiter, zum Beispiel der Ablauf der Kläranlage Roxel. Aus Tab. 1 geht desweiter hervor, wo hydrochemische und hydrobiologische Untersuchungen durchgeführt wurden.

Die Lage der einzelnen Probenahmestellen ist Abb. 9 zu entnehmen.

3.2 Wasseranalytik

Für die Auswertung wurden das bürgerliche Jahr (1. Januar bis 31. Dezember) zu Grunde gelegt.

Da bei der Durchführung der Untersuchungen in 1994 nicht das ganze Jahr berücksichtigt werden konnte, wurden bei der Ergebnisauswertung auch keine Mittelwertangaben vorgenommen, sondern ausschließlich die Höchst- und Tiefstwerte für diesen Zeitraum angegeben.
Tab. 1: Probenahmestellen der in den Münsterschen Aasee mündenden Fließgewässer.

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Probenahmestelle</th>
<th>Untersuchungsprogr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB</td>
<td>Kleines Waldfließgewässer am SW-Ende des Aasees</td>
<td>Hydrochemie</td>
</tr>
<tr>
<td>ZK</td>
<td>Mündung des Zookanals (Gievenbach)</td>
<td>Hydrochemie</td>
</tr>
<tr>
<td>RW</td>
<td>Regenwassereinleiter am linken Ufer des alten Aasees</td>
<td>Hydrochemie</td>
</tr>
<tr>
<td>BST</td>
<td>Aa-Gerinne an der Brücke Stadtgraben</td>
<td>Hydrochemie</td>
</tr>
<tr>
<td>Aa 1</td>
<td>Hangsbach (Quellbach der Aa) unterhalb der L 550</td>
<td>Makroozoobenthon</td>
</tr>
<tr>
<td>Aa 2</td>
<td>Aa in Höhe der Bauerschaft Hohenholte</td>
<td>Makroozoobenthon</td>
</tr>
<tr>
<td>Aa Einl.</td>
<td>Kleines Nebengewässer der Aa bei Hohenholte (Aa 2)</td>
<td>Makroozoobenthon</td>
</tr>
<tr>
<td>Aa ob.</td>
<td>Aa in Höhe der Bauerschaft Schonebeck</td>
<td>Makroozoobenthon</td>
</tr>
<tr>
<td>Aa unt.</td>
<td>Aa oberhalb der Einmündung des Meckelbaches</td>
<td>Makroozoobenthon</td>
</tr>
<tr>
<td>AaS</td>
<td>Aa an der Brücke Sentruper Straße</td>
<td>Hydrochemie</td>
</tr>
<tr>
<td>AaM</td>
<td>Mündung der Aa in den Aase</td>
<td>Hydrochemie</td>
</tr>
<tr>
<td>MB ob.</td>
<td>Meckelbach oberhalb der Ortsteile MS-Roxel</td>
<td>Makroozoobenthon</td>
</tr>
<tr>
<td>MB Ro</td>
<td>Meckelbach oberhalb der Kläranlage Roxel</td>
<td>Hydrochemie</td>
</tr>
<tr>
<td>Ka Ro</td>
<td>Ablauf der Kläranlage Roxel in den Meckelbach</td>
<td>Hydrochemie</td>
</tr>
<tr>
<td>MB Au</td>
<td>Meckelbach in Höhe der Autobahn A1</td>
<td>Hydrochemie</td>
</tr>
<tr>
<td>MB (= MB unt.)</td>
<td>Meckelbach kurz vor der Einmündung in die Aa</td>
<td>Hydrochemie/Makroozoobenthon</td>
</tr>
<tr>
<td>GB ob.</td>
<td>Gievenbach in Höhe des Ortsteiles MS-Gievenbeck</td>
<td>Makroozoobenthon</td>
</tr>
<tr>
<td>GB (= GB unt.)</td>
<td>unterer Gievenbach oberhalb der Sentruper Straße</td>
<td>Hydrochemie/Makroozoobenthon</td>
</tr>
<tr>
<td>GBu</td>
<td>Drainageeinleiter in den Gievenbach</td>
<td>Hydrochemie</td>
</tr>
</tbody>
</table>
Die Wasserproben des Aasee-Pelagials wurden mittels eines Wasserschöpfers nach RUTTNER entnommen. Die Entnahmen der Fließwasserproben erfolgten als Schöpfproben. Vorort wurden folgende Parameter gemessen:

- Bestimmung der Färbung als Spektraler Absorptionskoeffizient (SAK) bei $\lambda = 436\ \text{nm}$ (C1 DEV 1991).
- Bestimmung der Absorption im Bereich der UV-Strahlung als Spektraler Absorptionskoeffizient (SAK) bei $\lambda = 254\ \text{nm}$ (C3 DEV 1991).
- Bestimmung der Temperatur [$^\circ\text{C}$]: Gemessen mit WTW-Oximeter Oxi 191 und Elektrode EOT 190 (C4 DEV 1991).
- Bestimmung der Redox-Spannung [mV]: Gemessen mit KNICK-pH-meter pH 191 und Elektrode Ingold Pt 4805 (C6 DEV 1991).
- Bestimmung der Elektrolytischen Leitfähigkeit [$\mu\text{S/cm}$]: Gemessen mit WTW-Conduktometer LF 191 und Elektrode LA 1/T (C8 DEV 1991).
- Bestimmung der Chlorid-Ionen (> 10 mg/l): Maßanalytische Bestimmung nach MOHR (D1 DEV 1991).
- Bestimmung der Nitrat-Ionen (> 0,1 mg/l N): Photometrische Bestimmung mittels Natriumsalicylat und Kalium-Natrium-Tartrat; zur Vermindeung von Störungen durch gefärbte Wässer vorherige Flockung mit Aluminiumsulfat (D9 DEV 1975).
- Bestimmung der Nitrit-Ionen (> 0,005 mg/l N): Photometrische Bestimmung mittels Sulfanilamid und N-(1-Naphthyl)-äthylendiamin.
- Bestimmung von Phosphorverbindungen:
 1. Orthophosphat (> 0,005 mg/l P): Photometrische Bestimmung mittels Ammoniumheptamolybdat.
 2. Gesamtphosphat nach Aufschluß mit Kaliumperoxodisulfat (> 0,005 mg/l P): Photometrische Bestimmung mittels Ammoniumheptamolybdat (D11 DEV 1991).
- Bestimmung von Borat-Ionen (> 0,01 mg/l): Photometrische Bestimmung mittels Azomethin-H (D17 DEV 1991).
- Bestimmung von Eisen (> 0,01 mg/l): Photometrische Bestimmung mittels 1,10-Phenanthrolin und Hydroxylammoniumchlorid als Reduktionsmittel (E1 DEV 1991).
- Bestimmung von Calcium und Magnesium (> 0,05 mg/l):
 EDTA als Titrationsmittel und Calconcarbonsäure als Indikator.
 Komplexometrische Bestimmung mittels EDTA als Titrationsmittel und Eriochromschwarz T als Indikator (E3 DEV 1991).
- Bestimmung des Ammonium-Stickstoffs (> 0,03 mg/l N): Photometrische Bestimmung mittels Natriumdichlorisocyanurat und Natriumsalicylat (E5 DEV 1991).
- Ermittlung des Ammoniak-Stickstoffs: Berechnung auf Grundlage der nach E5 bestimmten Ammonium-Stickstoffgehalte sowie der entsprechenden Werte für den pH (C5) und die Wassertemperatur (C4) nach EMMERSON et al. (1975).
- Bestimmung des in Wasser gelösten Sauerstoffes (> 0,2 mg/l): Iodometrisches Verfahren nach WINKLER (G21 DEV 1991).
- Bestimmung des Biochemischen Sauerstoffbedarfs in n Tagen nach dem Verdünnsprinzip (Verdünnungs-BSBn), abgewandelt nach den Vorgaben des STAWA Münster, unter Verwendung von Verdünnsstauwasser standardisierter Zusammensetzung: Je 1000 ml Verdünnsstauwasser enthalten 8,5 mg KH2PO4, 21,75 mg K2HPO4, 33,4 mg Na2HPO4 • 2 H2O, 7,0 mg NH4Cl, 22,5 mg MgSO4 • 7 H2O, 27,5 mg CaCl2 und 0,25 mg FeCl3 • 6 H2O. Als Lösungsmittel wird Aqua dest. eingesetzt.
 2. Bestimmung des BSB nach 5 Tagen ohne Zusatz von N-Allylthioharnstoff.

Die Sauerstoffbestimmung erfolgt nach G22 (H51 DEV 1991).

Für die Bewertung der einzelnen Stoffkonzentrationen wurde die 7-stufige Belastungstabelle nach KLEE (1991) herangezogen.

3.3 Ermittlung von Fließgeschwindigkeit, Abflußmenge, Fracht u. Bilanz

Die Bestimmung der Fließgeschwindigkeit (v) erfolgte nach der Schleifenmethode als integrative Messung über den gesamten Abflußquerschnitt (A) gemäß DIN 4049 Teil 1. Hierfür wurde ein aus 6 Meßflügeln bestehendes Meßsystem der Firma A. Ott eingesetzt.

Der endgültigen Fließgeschwindigkeit (v) liegt das arithmetische Mittel von fünf Flügelmessungen zu Grunde. Der jewelige Bezugszeitraum jeder Messung beträgt 100 Sekunden.

Im Vergleich zu anderen Flügelmeßverfahren mit dem hydrologischen Meßflügel nach der Schleifenmethode ist mit einer im allgemeinen als tolerierbar anerkannten Abweichung von maximal ± 5 % zu rechnen (BRÜHL & SPIERLING 1986). Allerdings mußte bei extremer Wasserführung auf die Fließgeschwindigkeitsbestimmung nach der Driftkörpermethode (SCHWOERBEL 1986) zurückgegriffen werden, bei der größere Abweichungen einzukalkulieren sind.

Die Abflußmenge (Q) ergibt sich definitionsgemäß aus dem Abflußquerschnitt (A) und der Fließgeschwindigkeit (v) des Gewässers (vgl. HÖLTING 1992):

\[Q \ [l/s; \ m^3/s] = A \ [m^2] \cdot v \ [m/s]. \]

Für die Berechnung des Abflußquerschnitts (A) liegt parallel zur Bestimmung der entsprechenden Fließgeschwindigkeit die Messung der aktuellen Gewässertiefe in Abständen von 10 cm zu Grunde.
Wenn es die witterungsbedingten örtlichen Voraussetzungen nicht erlaubten, den hydrologischen Meßflügel einzusetzen, wurde die Abflußmenge gelegentlich auch direkt mit einem geeichten Schöpfgefäß bestimmt.

Die Datenbasis der Abflußmengen am Standort BST (Venturi-Meßgerinne der Münsterischen Aa nach Verlassen des Aasees, hinter dem Wehr an der Badestraße) beruhen auf den Messungen und Angaben des städtischen Tiefbauamtes (STADT MÜNSTER 1995). Diesen Angaben liegen zwei verschiedene Meßverfahren zugrunde:
1. Abflußmengen von weniger als 606 l/s wurden durch den Einsatz eines Venturimeßgerinnes ermittelt.
2. Bei 606 l/s und mehr wurden die Abflußmengen mittels Kontrollpegel, Wehrklappenhöhe und Fließgeschwindigkeit berechnet.

Beiden Verfahren ist ein Meßrhythmus von 30 Minuten gemeinsam. Da durch die computergesteuerte Wehranlage der Badestraße ein Stauziel von 54 m NN eingehalten werden soll (STADT MÜNSTER 1995), sind zeitweise schubartige, z. T. extrem differierende Abflußerscheinungen zu beobachten.

Aus technischen Gründen liegen für die folgenden Tage keine Abflußdaten des Wehres an der Badestraße vor: 9.6.93, 16.6.93, 9.2.94 und 11.5.94.

Die Fracht (F) ist das Produkt aus Abflußmenge (Q) und Massenkonzentration (K):
\[F \text{ [mg/s]} = Q \text{ [l/s]} \times K \text{ [mg/l]} \]

Hierbei ist zwischen der Fracht eines bestimmten Stoffes und der Gesamtfracht eines Gewässers zu differenzieren.

Aus Gründen der Vergleichbarkeit wurden für die Bilanzierungen ausschließlich die Ergebnisse der monatlichen Untersuchungsreihen zu Grunde gelegt.

Der aus den Fließgewässern stammende, für den Aasee relevante Input wurde als Summe der an den drei Standorten GB, AaS und MB berechneten Mengen formuliert (GB+AaS+MB).
3.4 Ermittlung der Wasseraufenthaltszeit des Aaseewassers (Verweildauer)

Die Wasseraufenthaltszeit des Aaseewassers wird vor allem durch den Niederschlag im Einzugsgebiet, die Verdunstung und das Seevolumen bestimmt. Da ein festes Stauziel von 54 m NN vorgegeben ist (STADT MÜNSTER 1992), wurde von einem i. d. R. konstanten Volumen des Aasees (VS = 763.000 m³) ausgegangen (vgl. Kap. 2.1). Um die nachfolgenden Berechnungen zu vereinfachen, blieben Faktoren wie z. B. das aus dem Eigeneinzugsgebiet des Aasees stammende Niederschlagswasser oder verdunstungsbedingte Wasserverluste unberücksichtigt. Somit läßt sich die durchschnittliche Verweildauer (Mt.) des Aaseewasserkörpers aus dem Quotienten des Seevolumens (VS) und den gemittelten Abflußsummen (MQ) der in den Aasee einmündenden Fließgewässer (s. Kap. 4.2.2) ermitteln:

\[Mt_v = \frac{V_S}{MQ} \] [d]

3.5 Sedimentuntersuchung

Für die Probenahmen wurde zusätzlich ein Bodengreifer nach ECKMAN-BIRGE eingesetzt. Es lassen sich hiermit Sedimententnahmen bis zu einer Sedimenttiefe von ca. 10 cm durchführen.

3.5.1 Schwermetallanalytik

Es wurden die Schwermetalle Chrom (> 3 ppb), Kobalt (> 3 ppb), Nickel (> 7 ppb), Kupfer (> 2 ppb), Zink (> 2 ppb), Cadmium (> 2 ppb), Blei (> 25 ppb) und Eisen (> 2 ppb) untersucht.

Während höhere Gehalte an Eisen und bis zu einem bestimmten Grade auch an Zink in natürlichen Gewässern meist geogenen Ursprungs sind, deuten höhere Gehalte an Chrom, Kobalt, Nickel, Kupfer, Cadmium und Blei auf ursächlich anthropogene Quellen hin. Dies können beispielsweise Metalle aus Rohrleitungen sein (Fe, Zn, Cu, Cd, Pb), die Rückstände aus Fahrzeugabgasen (Pb), Abwässer aus Galvanikbetrieben (Cr, Ni, Co) oder die Rückstände aus Pflanzenschutz- und Antifoulingmitteln (Cu). Bei entsprechenden Konzentrationen im Trinkwasser sind humantoxische Wirkungen wie die Blockierung von Enzymen, Schäden an Leber, Nieren und Nervensystem sowie carcinogene Auswirkungen bekannt. Gleichzeitig wirken Schwermetalle wie Cu und Cd als starke Fischgifte.

Für die Schwermetallanalytik wurden an insgesamt 40 verschiedenen Stellen des Aasees (vgl. Abb. 8) Sedimente entnommen, zu Mischproben verarbeitet und in Gefrierbeutel abgepackt. Sie wurden dunkel, kühl (ca. 4°C) und vor Luftzutritt geschützt bis zur Analyse gelagert (vgl. DEV: DIN 38414-S1). Die Probenahme erfolgte am 26.4.93.
Für die Bestimmung der Schwermetallgehalte wurde als Grundlage die Feinkornfraktion (< 63 µm) verwendet, da sich die Spurenelemente vor allem in der Ton-Schluff-Fraktion befinden (FORSTNER & SALOMONS 1980). Darüber hinaus bewirkt die < 63 µm-Fraktion eine gleichmäßige Verteilung der Schwermetalle, da sie nahezu identisch ist mit der unter vergleichbaren Bedingungen durch Suspension transportierten Fraktion.

Das Probematerial wurde per Ultraschall aufgeschlüsselt, dann mit einem Nybex-Nylongewebe gesiebt (Maschenweite 63 µm) und schließlich bei 60 °C getrocknet.

Der Probenaufschluß mit Königswasser erfolgte gemäß DIN 38414-S7 des DEV. Abweichend hiervon wurde zwecks Zeitersparnis die Aufschlußapparatur vorgewärmt und, um Probenverlusten vorzubeugen, der Filtrationsschritt dem Auffüllen auf 100 ml vorweggeschickt.

Die Bestimmung der Schwermetalle erfolgte mittels Atomemissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES) nach DIN 38414-E22 des DEV.

Für die Beurteilung der Belastungssituation der Aaseesedimente mit Schwermetallen wurde außerdem mittels Sedimentkernproben für jedes Schwermetall der regionale Standard (s. Tab. 2) für den Aasee bestimmt (näheres s. VEST 1997, WERNER & WIESE 1994).

<table>
<thead>
<tr>
<th>Schwermetallelement</th>
<th>Cr</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konzentration [ppm]</td>
<td>21,5</td>
<td>5,7</td>
<td>19,4</td>
<td>11,3</td>
<td>69,4</td>
<td>0,5</td>
<td>32,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Igeo</th>
<th>Igeo-Klasse</th>
<th>Sedimentqualität</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0</td>
<td>0</td>
<td>praktisch unbelastet</td>
</tr>
<tr>
<td>> 0 - 1</td>
<td>1</td>
<td>unbelastet - mäßig belastet</td>
</tr>
<tr>
<td>> 1 - 2</td>
<td>2</td>
<td>mäßig belastet</td>
</tr>
<tr>
<td>> 2 - 3</td>
<td>3</td>
<td>mäßig - stark belastet</td>
</tr>
<tr>
<td>> 3 - 4</td>
<td>4</td>
<td>stark belastet</td>
</tr>
<tr>
<td>> 4 - 5</td>
<td>5</td>
<td>stark - übermäßig belastet</td>
</tr>
<tr>
<td>> 5</td>
<td>6</td>
<td>übermäßig belastet</td>
</tr>
</tbody>
</table>

3.5.2 Rücklösung

Der Versuchsreihe zur Rücklösungsthematik liegen Probenahmen von Oberflächensedimenten des Aasees am 29.9.94 zu Grunde. Jeweils in der Mitte des alten und neuen Teiles des Aasees wurden die Proben entsprechend DIN 38414-S1 des DEV entnommen (vgl. Ausführungen zur Probenahme in Kap. 3.5 u. 3.5.1).

Für die folgenden Versuchsreihen wurden die Versuchsansätze in Abhängigkeit vom Sauerstoffangebot durchgeführt. Die unter ausreichenden Sauerstoffbedingungen laufenden Ansätze wurden wie schon während der Absetzphase mit Luftsauerstoff versorgt. Die Anoxi-Versuchsansätze dagegen wurden mit Begasungshähnen versehen (s. Abb. 10). Der noch im Reaktor befindliche Luftsaereostoff wurde unter Vermeidung von Turbulzenzen mit Stickstoffgas (N₂) aus der Versuchsatsosphäre verdrängt und und diese danach luftdicht verschlossen. Bei Raumtemperatur (18 °C) und Dunkelheit dauerte die folgende Versuchsphase 48 Stunden. Danach wurden wiederum Proben entnommen und auf ihre Phos-

Abb. 10: Versuchsanordnung zur Rücklösungsanstellenik.

Die Remobilisierungsrate an reaktivem Phosphor ergibt sich aus der Differenz zwischen den zu Versuchsbeginn und -ende bestimmten Gehalten. Die vergleichenden Darstellungen im Ergebnisteil beziehen sich auf die arithmetischen Mittel der Analysenergebnisse gleichen Ansatzes.

3.6 Planktonuntersuchung

Die zur Quantifizierung benötigte Volumenbezugsgröße hängt von der Anzahl der Netzzüge, dem Kegelvolumen des Planktonnetzes, dem Zylindervolumen der darüber befindlichen Wassersäule, dem eingeengten Filtrationsvolumen und der durch Auszählung ermittelten Planktondichte in der Zählkammer ab.

Zur Determination des Planktons wurde auf folgende Literatur zurückgegriffen:
BARBER & HAWORTH (1981); BICK (1972); BRINKHURST (1971); BROHMER (1982); ETTL (1983); FLÖSSNER (1972); FREYER (1978); GERMAIN (1981); GROSPETSCH (1972); HARDING & SMITH (1974); HUBER-PESTALOZZI (1938-1983); HUSTEDT (1930); KALBE (1980); KIEFER (1978); KLOTTER (1957); KOMAREK & FOTT (1983); KOSTE (1978); LIND & BROOK (1980); LÖFFLER (1972); PAGE (1976); PONTIN (1978); RUTTNER-KOLISKO (1972); RUZICKA (1977/1981); SCOURFIELD & HARDING (1966); STARMACH (1985); STREBLE & KRAUTER (1988); STRESEMANN (1992).

3.7 Makrozoobenthonuntersuchung

3.7.1 Aasee

Das Makrozoobenthon des Aasees wurde vom Boot aus mit Hilfe eines Bodengreifers nach ECKMAN-BIRGE als Schlammprobe genommen. Die Organismen mußten im Labor
ausgeschlämmt, mit Ethanol (70%) getötet und konserviert werden. Danach erfolgte die Determination.

3.7.2 Fließgewässer

Zusätzlich in das Untersuchungsprogramm aufgenommen wurden die Standorte Aa 1, Aa 2 und Aa Einl. Ihre Beprobung erfolgte im Oktober 1994.

Um ein möglichst vollständiges Bild der Biozönose zu erhalten, wurde, unabhängig von der prozentualen Choriotopverteilung, Wert darauf gelegt, jede Besiedlungsni sche zu erfassen. Daher wurden alle Habitat e abgesucht.

Hartsubstrate wie größere Steine oder Totholz wurden Stück für Stück mit einer stumpfen Federstahlpinzette und einer Lupe nach Organismen abgesucht.

Bei dem abschließenden Abschätzen der Abundanzen wurde einerseits die Besiedlungsdichte der einzelnen Taxa und gleichzeitig der prozentuale Anteil ihres Besiedlungssubstrates berücksichtigt.

Die im Feld nicht bis zur Artebene bestimmmbaren Tiere wurden in der Regel vor Ort in 70%igem Ethanol getötet, konserviert und später im Labor determiniert.

Folgende Utensilien wurden für die Aufnahmen der makroskopischen Invertebratenfauna benutzt:
- ein Sieb, Öffnungsdurchmesser 14 cm, Maschenweite 1 mm;
- ein weißer Emailleteller (17 cm ø) zum Sichten und eine grobe weiße Plastikwanne (30 cm ø, 13 cm hoch) zum Sichten, Hältern und Auszählen der Organismen;
mehrere kleine verschließbare Gläser zum Transport von bereits gesammelten Tieren während der Aufnahmen;
- spitze und stumpfe Federstahlpinzetten zum Absammeln der Tiere von Steinen, Holz und anderen Substraten sowie zur Entnahme aus Sieb, Gefäßen o. ä.;
- eine Saugpipette mit breiter Öffnung zur Entnahme von Käfern und Wanzen;
- eine Urmacherlupe (Vergr. = 5 x) zum ersten Sondieren der Organismen;
- CO2 (Mineralwasser) zum Betäuben von Hirudineen;
- Ethanol (70%) zum Töten und Konservieren;
- Rollrandgläser 2 cm \(\varnothing \) und 5 cm hoch zur dauerhaften Aufbewahrung der konservierten Tiere;
- ein Taschenmikroskop für die Vorortbestimmung bestimmter Strudelwurmarten (Tricladida).

An dieser Stelle sei darauf hingewiesen, daß die Arten des Saprobienystems einen nur vergleichsweise geringen Anteil - je nach Standort etwa ein Drittel - an der gesamten vorgefundenen Limnofauna ausmachen.

Weiterhin wurde auch der Artenfehlbetrag (AF) nach KOTHE (1962) ermittelt. Er gibt Aufschluß über quantitative Änderungen der Artendiversität im Verlauf eines Fließgewässers und berechnet sich nach der Formel:

\[
AF = \left(\frac{A_{ob.} - A_{unt.}}{A_{ob.}} \right) \times 100 \%
\]

\(A_{ob.} \) gibt hierbei die Speziesanzahl der oberhalb liegenden, \(A_{unt.} \) die der unterhalb liegenden Probenahmestelle an.

Alle Taxa - mit Ausnahme der Acarina- wurden mindestens bis zur Familie oder Gattung bestimmt. Die in der Übergangszone lebenden Invertebraten wurden ebenfalls soweit wie möglich berücksichtigt, wenn sie nicht schon sowieso über die aquatische Lebensphase (wie z. B. bei den Arten der Helodiden) erfaßt wurden.

Auch solche Arten der Limnofauna, die in ihrer terrestrischen Form bemerkt wurden, wurden als potentiell vorhanden registriert, jedoch nicht mit Abundanzwerten bedacht, es sei denn, sie wurden gleichzeitig auch in ihrer aquatischen Form vorgefunden.

Zur Determination des Makrozoobenthons wurde auf folgende Literatur zurückgegriffen: ADAM (1990); AUBERT (1959); AUTRUM (1967); BAYERISCHES LANDESAMT FÜR WASSERWIRTSCHAFT (1988); BELLMAN (1987); BIRKO (1988); BRINKHURST (1971); BROHMER (1982); DAVIS (1968); EDININGTON & HILDREW (1981), ELLIOTT & MANN (1979); ELLIOTT, HUMPESCH, & MACAN, (1988); ELLIOTT (1977); ENGELHARDT (1989); FRANKE (1979); FRENDE, HARDE & LOHSE (1965/67/71/79); GLEDHILL, SUTCLIFFE & WILLIAMS (1976); GLOER, BROOK & OSTERMANN (1986); HANSEN (1987); HARRER (1989); HEDICKE (1961); HEIDEMANN & SEIBENBUSCH (1993); HENNIG (1968); HICKIN (1967); HIGLER & SOLEM (1986); HILEY (1976); HOLMEN (1987); HYNES (1984); ILLIES (1955/1968); KLAPALEK (1909); KLATIONSATZER (1996); LILLEHAMMER (1988); MACAN (1977); MÜLLER (1990);

4. Ergebnisse

4.1 Ergebnisse der Untersuchung Aasee

4.1.1 Wasseraufenthaltszeit des Aaseewassers (Verweildauer)

Die gewässertypologische Zwischenstellung des Aasees ist vor allem daran erkennbar, daß er im Sommer in seinem Charakter mehr zu einem Stillgewässer, im Winter dagegen mehr zu einem Fließgewässer tendiert. Die im Untersuchungszeitraum erheblich variierenden Extremwerte der Verweildauer (tv) des Aasee-Wassers verdeutlichen dies: Im späten Frühjahr 1993 betrug die Verweilzeit 73,4 Tage (QMin = 0,12 m³/s), Ende Dezember 1993 lediglich 1,4 Tage (Hochwasserereignis mit QMax = 6,40 m³/s).

4.1.2 Wasseranalysen (Jahresgänge)

Die Trübung (Secchi-Sichttiefe; Abb. 11)

Die Trübung gemessen als Sichttiefe ist eine halbquantitative Summengröße, die durch diverse Faktoren beeinflußt wird. Für stehende Gewässer gibt sie Hinweise beispielsweise auf die Dichte der Planktonpopulation und/oder auf den Grad der Tontrübe. Mit einer durchschnittlichen Sichttiefe von 0,58 m im Jahre 1993 ist die Sichttiefe insgesamt gering. Dies verdeutlichen auch die ermittelten Höchst- und Tiefstwerte. Maximal wurden nur 1,20 m im Oktober 1993 und für 1994 0,70 m in den Monaten Januar und März erreicht.

Die geringsten Sichttiefen beliefen sich auf 0,30 m im Juli 1993 und auf nur 0,25 m im Mai 1994.

Der Spektrale Absorptionskoeffizient bei 436 nm (SAK₄₃₆nm)

Die Absorption des sichtbaren Lichtes bei 436 nm (s. Abb. 12) ist ein Summenmaß für die Färbung des Wassers durch Stoffe gelbräunlicher Tönung. Der SAK₄₃₆nm lag für 1993 im Mittel bei 2,3 m⁻¹. Die Maxima wurden mit 7,4 m⁻¹ im September 1993 und mit 10,2 m⁻¹ im August 1994 registriert. Die Minima betrugen 1993 0,6 m⁻¹ im Januar und Februar sowie 0,8 m⁻¹ im Juli 1994.
Abb. 11: Jahresgang der Trübung (Secchi-Sichttiefe) des Münsterschen Aasees von Dezember 1992 bis September 1994 [m].

Abb. 12: Jahresgang des Spektralen Absorptionskoeffizienten (436 nm) des Münsterschen Aasees von Dezember 1992 bis September 1994 [m⁻¹].

Abb. 13: Jahresgang des Spektralen Absorptionskoeffizienten (254 nm) des Münsterschen Aasees von Dezember 1992 bis September 1994 [m⁻¹].
Der Spektrale Absorptionskoeffizient bei 254 nm (SAK$_{254\text{ nm}}$)

Mit dem Spektralen Absorptionskoeffizienten bei 254 nm (s. Abb. 13) wird die Absorption im UV-Bereich angegeben. Hier absorbieren insbesondere konjugierte und aromatische organische Verbindungen, z. B. Huminstoffe oder Lignin enthaltende Verbindungen. Im Schnitt ergaben sich für 1993 ein SAK$_{254\text{ nm}}$ von 18,2 m$^{-1}$. Maximal wurden zeitweise fast eineinhalb bis doppelt so hohe Werte erreicht. 1993 waren es 28,9 m$^{-1}$ im Dezember und 1994 38,0 m$^{-1}$ im August. Die Mindestmarken lagen bei 10,5 m$^{-1}$ im Januar 1993 und bei 13,5 m$^{-1}$ im Mai 1994.

Die Wassertemperatur (Abb. 14)

Der pH-Wert (Abb. 15)

Mit 9,4 wurden die höchsten pH-Werte (in Abb. 15 nicht dargestellt) außerhalb des Beprobungsrhythmus am 10. August 1994 zwischen 20.10 Uhr und 20.40 Uhr (MESZ) in den Aaseebereichen des Segelclub Hansa (ASN) und der Segeschule Overschmidt gemessen (SCM).

Die Redoxspannung (Abb. 16)

Die Redoxspannung lag 1993 im Schnitt bei 381 mV. Jeweils in den Märzmonaten wurden folgende Maxima ermittelt: 1993 453 mV und 1994 435 mV.

Die niedrigsten Redoxspannungen wurden bei zusätzlich durchgeführten, in Abb. 16 nicht dargestellten Messungen registriert. So wurden am 10. August 1994 am alten Aasee im Bereich der Segelschule Overschmidt (SCM) um 20.40 Uhr (MESZ) 92 mV und am neuen Aasee im Bereich des Yachthafens SC-Hansa um 20.10 Uhr (MESZ) sogar nur 77 mV gemessen.

Die elektrolytische Leitfähigkeit (Abb. 17)

Anfang 1993 nimmt die elektrolytische Leitfähigkeit von einem Niveau um etwa 800 µS/cm zum August hin fast kontinuierlich bis auf ein Minimum von 509 µS/cm ab. Das Jahresmaximum wurde im November mit 821 µS/cm erreicht. Die Ganglinien für das Jahr

1994 weisen tendenziell einen ähnlichen Verlauf auf. Dem Maximum im Februar mit 734 µS/cm folgt eine kontinuierliche Abnahme bis auf ein Minimum von 414 µS/cm im Juni.

Der Sauerstoff (Abb. 18 u. Abb. 19)
Der Sauerstoffgehalt lag 1993 im Schnitt bei 11,2 mg/l O₂. Die entsprechenden Sauerstoffsättigungen betrugen 101 % O₂. Maximal wurden 1993 21,8 mg/l O₂ (186 % O₂) im März und 1994 29,1 mg/l O₂ (275 % O₂) im Mai gemessen. Das Minimum für 1993 wurde mit 5,0 mg/l O₂ (51 % O₂) im Juni registriert.
Mit 0,6 mg/l O₂ wurde am 06. Juli 1994 (10.10 Uhr MESZ) das während des gesamten Untersuchungszeitraumes extremste Sauerstoffdefizit festgestellt (in Abb. 18 u. 19 nicht dargestellt). Die Messung wurde im Bereich des neuen Aasees (ASN) unmittelbar über Grund in 1,70 m Tiefe durchgeführt. Die entsprechende Sauerstoffsättigung lag bei 7 % O₂.

Der Biochemische Sauerstoffbedarf nach 5 Tagen Zehrung ohne ATH als Nitrifikationshemmer (Abb. 20)
Die durchschnittliche Zehrung des Aaseewassers lag 1993 bei 3,2 mg/l O₂. Die höchsten Werte wurden im Februar 1993 mit 11,2 mg/l O₂ und im Mai 1994 mit 15,8 mg/l O₂ erreicht. Die niedrigsten Zehrungsergebnisse betrugen 0,5 mg/l O₂ in den Monaten Oktober und Dezember für 1993 und 0,4 mg/l O₂ im Februar 1994.
Grundsätzlich ist jeweils zum Winter hin eine abnehmende Tendenz erkennbar, während die Werte in der Frühjahrsphase auf deutlich höherem Niveau angesiedelt sind.

Der Biochemische Sauerstoffbedarf nach 5 Tagen Zehrung mit ATH als Nitrifikationshemmer (Abb. 21)
Die durchschnittliche Zehrung lag 1993 bei 3,4 mg/l O₂. Die höchsten Werte wurden im Februar 1993 mit 13,0 mg/l O₂ und im Mai 1994 mit 19,5 mg/l O₂ erreicht. Die niedrigsten Zehrungsergebnisse betrugen 0,2 mg/l O₂ im Oktober 1993 und 0,4 mg/l O₂ im April 1994.
Die Ganglinien der BSB-Untersuchungsreihen mit ATH verlaufen weitgehend parallel zu denen ohne ATH, so daß auch die in den Jahren beobachtbaren Tendenzen entsprechend ausfallen.

Der Chemische Sauerstoffbedarf (Abb. 22)
Der mittlere chemische Sauerstoffbedarf beträgt 1993 23,5 mg/l O₂. Der CSB liegt damit im Schnitt um das 7-fache über dem Durchschnittsniveau des BSB.
Das im Januar 1993 ermittelte Maximum in Höhe von 153 mg/l O₂ (ASN₉₀) stellt einen einmaligen Sonderfall dar. Das zweite 1993 gemessene Maximum mit 48,8 mg/l O₂ im Juli ist eher vergleichbar mit dem Maximalwert von 57,5 mg/l O₂ im August des Folgejahres. Die niedrigsten Werte wurden im April 1993 mit 9,2 mg/l O₂ und im März 1994 mit 3,6 mg/l O₂ gemessen.

Das Nitrat (Abb. 23)
Nitrat spielt innerhalb des Stickstoffkreislaufes mengenmäßig die wichtigste Rolle unter den anorganischen löslichen Stickstoffverbindungen. Der Konzentrationsverlauf der

Abb. 18: Jahresgang der Sauerstoffkonzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l O₂].

Abb. 20: Jahresgang des Biochemischen Sauerstoffbedarfs (BSB\textsubscript{5} ohne ATH) des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l O\textsubscript{2}].

Abb. 21: Jahresgang des Biochemischen Sauerstoffbedarfs (BSB\textsubscript{5} mit ATH) des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l O\textsubscript{2}].

Abb. 22: Jahresgang des Chemischen Sauerstoffbedarfs (CSB) des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l O\textsubscript{2}].

Das Nitrit (Abb. 24)
Nitrit als Stickstoffkomponente ist besonders wegen seiner Toxizität von Bedeutung. 1993 erreichte der Nitrit-Stickstoffgehalt im Mai mit 0,16 mg/l NO₂⁻-N seinen Höhepunkt. Es kam jedoch auch zu anderen Zeitpunkten zu beachtlichen Nitritkonzentrationen, die sich beispielsweise im Februar und Oktober 1993 im Bereich von 0,10 mg/l NO₂⁻-N bewegten. Für 1994 lag die Höchstkonzentration des Jahres bei 0,14 mg/l NO₂⁻-N. Die Nitritkonzentrationen im Zeitraum August/September 1993 und im August 1994 fielen auf Tiefstwerte von jeweils 0,02 mg/l NO₂⁻-N. Der Jahresdurchschnitt ließ sich 1993 bei einer Konzentration von 0,06 mg/l NO₂⁻-N ermitteln. Die EG-Richtlinie für Fischgewässer (LWA 1991) sieht für Salmoniden-Gewässer einen Richtwert von <0,003 mg/l NO₂⁻-N bzw. für Cypriniden-Gewässer von <0,009 mg/l NO₂⁻-N vor. Selbst mit den gemessenen Minimalwerten von 0,02 mg/l NO₂⁻-N wurden diese Forderungen zu keinem Zeitpunkt der Untersuchung erfüllt.

Das Ammonium (Abb. 25)
Stickstoff in seiner hochreduzierten Form kommt im Wasser überwiegend als Ammonium-Stickstoff vor. 1993 betrug der durchschnittliche Ammoniumgehalt 0,17 mg/l NH₄⁺-N. Die Maxima lagen bei 0,58 mg/l NH₄⁺-N im Juni 1993 und bei 0,90 mg/l NH₄⁺-N im September 1994. Für die Monate August und November 1993 sowie Mai 1994 lagen die Ammoniumresultate teilweise unterhalb der Nachweisgrenze. Die EG-Richtlinie für Fischgewässer (LWA 1991) sieht einen Richtwert für <0,004 mg/l NH₃-N vor. Dieser wurde kaum eingehalten. Der Grenzwert für Ammoniak liegt bei 0,02 mg/l NH₃-N, denn ab 0,025 mg/l NH₃-N treten bei Fischen chronische Schäden auf. Er
Abb. 23: Jahresgang der Nitratkonzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l NO_3^- - N].

Abb. 24: Jahresgang der Nitritkonzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l NO_2^- - N].

Abb. 25: Jahresgang der Ammoniumkonzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l NH_4^- - N].

Den Ammoniumgehalten entsprechend waren für die Monate August und November 1993 sowie Mai 1994 an einigen Standorten des Aasees kein Ammoniak zu ermitteln.

Das ortho-Phosphat (SRP = soluble reactive phosphorus; Abb. 27)

Der mittlere ortho-Phosphatgehalt des Aaseewassers ergab für 1993 0,20 mg/l PO₄³⁻-P. Die Höchstkonzentrationen beliefen sich 1993 auf 0,40 mg/l PO₄³⁻-P im Juli und August und auf 0,60 mg/l PO₄³⁻-P im September 1994. Die Minimalsituationen des Aasees wurden im März 1993 mit dem Resultat „nicht nachweisbar“ und im Mai 1994 mit 0,02 mg/l PO₄³⁻-P registriert. Hierbei muß darauf hingewiesen werden, daß zeitgleich an anderen Probenahmestellen für 1993 immerhin noch Gehalte von bis zu 0,04 mg/l PO₄³⁻-P (ASN1 so) bzw. für 1994 0,09 mg/l PO₄³⁻-P (ASN100) nachgewiesen werden konnten. Der Aasee war also zu keinem Zeitpunkt völlig frei von ortho-Phosphat!

Das Gesamtphosphat (TP = total phosphorus; Abb. 28)
Die Gehalte an Gesamtphosphat lagen 1993 bei durchschnittlich 0,24 mg/l PO₄³⁻-P. Damit liegen sie für 1993 nur geringfügig, für 1994 jedoch um das Eineinhalbfache über den entsprechenden ortho-Phosphatgehalten. Höchstkonzentrationen wurden 1993 mit 0,85 mg/l PO₄³⁻-P im Juli und 1994 mit 0,83 mg/l PO₄³⁻-P im September erreicht. Die niedrigsten Gesamtphosphatgehalte wurden im März 1993 mit 0,04 mg/l PO₄³⁻-P und im Januar 1994 mit 0,09 mg/l PO₄³⁻-P gemessen.

Das Borat (Abb. 29)
Borat spielt im Konzert der Wasserinhaltsstoffe eine besondere Rolle als Marker für anthropogen bedingte Verunreinigungen. Die natürlichen Borokonzentrationen liegen bei < 0,01 mg B/l (DIETZ 1975). Da Borverbindungen einerseits hoch mobil sind, das heißt u. a. bei Klärrprozessen nicht zurückgehalten werden, andererseits vor allem als Bleich und Desinfektionsmittel, hier besonders in Form des Natriumperborats (z. B. NaB0₂ • H₂O₂), in Waschmitteln enthalten sind, zeigen erhöhte Borokonzentrationen Belastungen durch Haushaltsabwässer an.

Die mittlere Borat-Borkonzentration betrug 1993 0,03 mg/l BO₃⁻⁻-B.
Die Extremwerte schwankten 1993 zwischen 0,07 mg/l BO₃⁻⁻-B und nicht nachweisbaren Boratkonzentrationen. 1994 wurden maximal 0,15 mg/l BO₃⁻⁻-B und minimal 0,01 mg/l BO₃⁻⁻-B verzeichnet.
Festzuhalten bleibt, daß der Jahresdurchschnittswert des Aaseewassers für 1993 gegenüber einem natürlichen geogenen Borgehalt von < 0,01 mg B/l um den Faktor drei erhöht ist.

Das Calcium (Abb. 30)
Bedingt durch den carbonatischen Untergrund spielt Calcium mengenmäßig die größte Rolle unter den Kationen. Die Durchschnittskonzentration für das Jahr 1993 betrug 114
Abb. 26: Jahresgang der Ammoniakkonzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l NH₃-N].

Abb. 27: Jahresgang der ortho-Phosphat-Konzentration (SRP) des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l P].

Abb. 28: Jahresgang der Gesamt-Phosphat-Konzentration (TP) des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l P].
Abb. 29: Jahresgang der Boratkonzentration des Münsterschen Aasee von Dezember 1992 bis September 1994 [mg/l B].

Abb. 30: Jahresgang der Calciumkonzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l Ca].

Abb. 31: Jahresgang der Magnesiumkonzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l Mg].
mg/l Ca\(^{2+}\). Mit Werten von 180 mg/l Ca\(^{2+}\) im Oktober 1993 und 140 mg/l Ca\(^{2+}\) in den Monaten Januar und Februar des Jahres 1994 erreichten die Calciumgehalte Maximalwerte. Die geringsten Konzentrationen wurden im August 1993 mit 59 mg/l Ca\(^{2+}\) und im September 1994 mit 60 mg/l Ca\(^{2+}\) gemessen.

Das Magnesium (Abb. 31)

Die Magnesiumkonzentrationen bewegen sich sowohl für 1993 wie für 1994 in einer Spanne von maximal 18 mg/l Mg\(^{2+}\) und minimal unterhalb der Nachweisgrenze befindlichen Gehalten. Der Wert von 54 mg/l Mg\(^{2+}\) im Mai 1994 (ASA100) stellt eine einmalige Ausnahme dar.

Die Durchschnittskonzentration für Magnesium lag 1993 bei 5 mg/l Mg\(^{2+}\).

Das Hydrogencarbonat (Abb. 32)

Die mittlere Hydrogencarbonatkonzentration lag 1993 bei 259 mg/l HCO\(_3^-\). 1993 wurden maximal 360 mg/l HCO\(_3^-\) im November und maximal 168 mg/l HCO\(_3^-\) im August vorgefunden. 1994 waren es maximal 329 mg/l HCO\(_3^-\) im Januar und minimal 107 mg/l HCO\(_3^-\) im Mai.

Gut erkennbar ist der parallele Verlauf der Hydrogencarbonatganglinien mit den Ganglinien des Calciums.

Das Carbonat (Abb. 33)

Innerhalb des Kalk-Kohlensäure-Gleichgewichtes entsteht Carbonat dann, wenn bei entsprechend hohen pH-Werten (pH > 8,2) Hydrogencarbonat unter Protonenabgabe in Carbonat übergeht. Dieser Vorgang ist reversibel. Parallel zu den pH-Maxima im Aaseewasser wurden für die Carbonatgehalte Spitzenwerte für 1993 von bis zu 28,8 mg/l HCO\(_3^-\) im Mai und für 1994 von bis zu 37,2 mg/l HCO\(_3^-\) ermittelt. Der Durchschnittswert lag 1993 bei 6,8 mg/l HCO\(_3^-\).

Das Chlorid (Abb. 34)

Die Chloridgehalte sind insgesamt relativ konstant. Die Amplituden liegen 1993 zwischen 33 mg/l Cl\(^-\) und 54 mg/l Cl\(^-\) und 1994 zwischen 29 mg/l Cl\(^-\) und 51 mg/l Cl\(^-\). Der Mittelwert betrug 1993 43 mg/l Cl\(^-\). Nach KLEE (1991) entspricht dies der Belastungsstufe III.

Das Eisen (Abb. 35 - 37)

Eisen, bestimmt als Gesamt-Eisen, fiel 1993 mit durchschnittlich 0,07 mg/l Fe\(^{2+\text{III}}\) kaum ins Gewicht. Dies gilt auch für die höchsten Einzelmessungen im Mai 1993 und im Mai 1994, wo jeweils 0,20 mg/l Fe\(^{2+\text{III}}\) bzw. 0,44 mg/l Fe\(^{2+\text{III}}\) vorgefunden wurden. Die Allgemeine Güteanforderung für Fließgewässer beispielsweise fordert einen Wert von ≤ 2 mg/l Fe\(^{2+\text{III}}\) (LWA 1991). Bei der Betrachtung des Verhältnisses Eisen II : Eisen III fällt allerdings auf, daß dieses sehr häufig > 1 war, obwohl unter aeroben Bedingungen eher ein
Abb. 32: Jahresgang der Hydrogencarbonatkonzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l HCO₃].

Abb. 33: Jahresgang der Carbonatkonzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l CO₃].

Abb. 34: Jahresgang der Chloridkonzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l Cl].
Abb. 35: Jahresgang der Gesamt-Eisen-Konzentration des Münsterschen Aasees von Dezember 1992 bis September 1994 [mg/l Fe].

Verhältnis von < 1 zu erwarten ist. Am extremsten war dieses Phänomen im Mai 1994 zu beobachten. So betrugen die Maxima für diesen Monat 0,3 mg/l Fe²⁺ und 0,01 mg/l Fe³⁺, was einem Fe II/III-Verhältnis von 30:1 entspricht.

4.1.3 Wasseranalysen (Tagesgänge)

Abb. 38 zeigt, daß sich ein vertikaler Temperaturgradient ausbildet, der am Mittag (13.15 Uhr MESZ) mit 24,1 °C in 0,1 und 22,1 °C in 1,8 m Tiefe am deutlichsten ausgeprägt ist. Jedoch ist auf Grund der geringen Tiefe des Aasees (hier maximal 1,80 m) nicht eine typische Schichtung in Epi-, Meta- und Hypolimnion möglich. Es ist daher davon auszugehen, daß der Aaseewasserkörper von der Oberfläche bis zum Grund zu allen Jahreszeiten als holomiktisches Gewässer angesehen werden kann. Durch die Fließgewässer Aa und Gievenbach sowie durch anthropogen bedingte Turbulenzen sind weitere Strömungsfaktoren gegeben.

Beim Sauerstoff (Abb. 39) werden die höchsten Gehalte mit 20 mg/l um 19,30 Uhr des 30.7.92 in der obersten Schicht in 0,1 m Tiefe gemessen; am Gewässergrund (1,8 m) beträgt der Gehalt zu diesem Zeitpunkt 16,0 mg/l. Die niedrigsten Sauerstoffgehalte betragen 6,6 mg/l am Gewässergrund und wurden in den frühen Morgenstunden (4.30 Uhr) des 31.7.92 gemessen. Der Sauerstoffgehalt sank dabei von 9,4 mg/l ab, was einer Abnahme von 59 % entspricht. Zum selben Zeitpunkt liegt der Sauerstoffgehalt der oberen Schichten (0,1 - 1,0 m) mit 13,4 bis
13,2 mg/l doppelt so hoch wie am Grund. Auch die Abnahme gegenüber der Messung von 19.30 Uhr des Vortages fällt dort erheblich weniger dramatisch aus.

Die Sauerstoffsättigungs­ganglinien (Abb. 40) verdeutlichen die unterschiedlichen Tagesphasen. Extreme Übersättigungen von bis zu 234 % in 0,1 m Wassertiefe um 19.30 Uhr des 30.7.92 sind das Produktionsresultat des in den oberen Wasserschichten befindlichen Phytoplanktons. Demgegenüber steht ein Sättigungsdefizit um 4.30 Uhr des fol-
genden Tages am Gewässergrund (1,8 m) mit 75 %. Neun Stunden vorher wurden dort noch 185 % Übersättigung registriert. Die extreme Sauerstoffzehrung in den Nachtstun-
den ist auf die Atmungsaktivität aller Organismen einschließlich der Produzenten zurück-
zuführen.

4.1.4 Schwermetallanalysen (Sediment; s. Tab. 2 u. Abb. 41)

Die toxische Wirkung von Schwermetallen hängt nicht allein von ihrem Gehalt in der Umwelt ab. Dafür ist vielmehr ein multikausaler Faktorenkomplex verantwortlich. Die Verfügbarkeit, das heißt vor allem die Löslichkeit der unterschiedlichen Schwermetall-
elemente, ist hierbei einer der entscheidenden Faktoren. Die Mobilitätsreihe (vgl. BLUME & BRÜMMER 1987) zeigt die diesbezügliche Relation zwischen den hier behandelten Schwermetallen:

\[\text{Cd} \geq \text{Zn} \geq \text{Ni} \geq \text{Cu} \geq \text{Cr} \geq \text{Pb} \]

Cadmium ist in seinen Eigenschaften also als sehr mobil zu bezeichnen, während Blei durch ein hohes Maß an Immobilität gekennzeichnet ist. Der Geoakkumulations-Index (I_{geo}) eignet sich dagegen vor allem dazu, Aussagen bezüglich der Zunahme von Schwer-
metallen zu treffen. Die anthropogen bedingte Zunahme steht hierbei im Vordergrund des Interesses.

- Für **Ch r o m** liegt der Anreicherungsfaktor im alten Aasee bei 1,5 und beim neuen bei 1,4. Sowohl im neuen als auch im alten Aasee werden die I_{geo}-Klassen 0 und 1 erreicht, was einer mit Chrom unbelasteten Sedimentqualität entspricht.

- **K o b a l t** ist von allen untersuchten Schwermetallelementen das mit dem geringsten Anreicherungs- und Belastungsausmaß im Oberflächensediment. Der Anreicherungsfaktor beträgt 1. Das heißt, es hat faktisch keine Anreicherung mit Kobalt stattgefunden. Dementsprechend kann der gesamte Aasee in die I_{geo}-Klasse 0 für Kobalt eingestuft werden.

- Die Anreicherung mit **N i c k e l** beträgt für beide Aaseeteile 1,4. Nach Kobalt ist der Aasee am wenigsten mit Nickel belastet. In der Regel wird die I_{geo}-Klasse 0 angetroffen, was einer praktisch unbelasteten Situation mit Nickel entspricht.

- **K u p f e r** ist das Schwermetallelement, welches die höchsten Anreicherungsfaktoren aufweist. Sie liegen im alten Aasee mit durchschnittlich 6,7 deutlich noch über denen des neuen Aasees mit durchschnittlich 4,8. Der alte Aasee weist somit eine mäßige bis starke Belastung mit Kupfer auf (I_{geo}-Klasse 3), die Kupferbelastung des neuen Aasees fällt mit I_{geo}-Klasse 2 dagegen mäßig aus.

- Die durch **Z i n k** bedingte Belastungssituation ähnelt der des Kupfers. Mit Anreiche-
 rungsfaktoren von 6,2 (ASA) und 4,5 (ASN) wird auch hier wieder die höhere Belastung des alten gegenüber des neuen Aasees erkennbar. Auch das Ausmaß der Anreicherung mit Zink ist vergleichbar mit dem des Kupfers (s. o.). Die entsprechende Einstufung in das I_{geo}-
Klassen-System bedeutet für den alten Aaseeteil eine mäßige bis starke Belastung mit Zink (I_{geo}-Klasse 3) und für den neuen Teil eine mäßige Belastung (I_{geo}-Klasse 2).

- Beim **C a d m i u m** liegt die durchschnittliche Anreicherung für den alten Aasee bei
4,9 und für den neuen bei 3,0. Die Cadmiumbelastung ist als mäßig (I_{geo}-Klasse 2) für den alten und als unbelastet bis mäßig belastet (I_{geo}-Klasse 1) für den neuen Aaseeteil zu bezeichnen. Obwohl die Belastung durch Cadmium im Vergleich zum Kupfer und zum Zink um jeweils eine I_{geo}-Klasse geringer ausfällt, zeigen vor allem die Anreicherungs-
faktoren eine insgesamt deutliche Cadmiumzunahme. Gleichzeitig ist auch hier der ten-
denzielle Anstieg vom neuen zum alten Aaseeteil hin deutlich sichtbar.

- Das **B l e i** ist in der Feinkornfraktion der Oberflächensedimente des neuen Aasees um durchschnittlich 2,3mal, in der des alten um 3,4mal stärker angereichert. Damit fällt ASN
in die I_{geo}-Klasse 1 (unbelastet bis mäßig belastet) und ASA in die I_{geo}-Klasse 2 (mäßig belastet). Wiederum ist die Tendenz - hier für Blei - vom neuen zum alten Aasee hin feststellbar.

Zusammenfassend läßt sich feststellen, daß zwei deutlich voneinander differenzierbare Schwermetallgruppen auszumachen sind:

1. Chrom, Kobalt und Nickel; hinsichtlich dieser Elemente sind die Sedimente des Aasees als kaum oder unbelastet einzuordnen.

4.1.5 Remobilisierungspotential des im Gewässersediment deponierten Phosphors

Phosphor wird von den Pflanzen hauptsächlich in Form des gelösten anorganischen Phosphats (ortho-Phosphat) aufgenommen. Gleichzeitig macht diese Phosphatfraktion innerhalb des Gesamtporphats normalerweise den geringsten Anteil aus. Hierfür sind verschiedene Ursachen innerhalb des Phosphorkreislaufes verantwortlich:

45
bedingte Prozesse, können erheblichen Einfluß auf den Phosphorhaushalt im Sediment ausüben. Als Beispiele seien hier der bakterielle Abbau von frisch sedimentierter organischer Substanz (vgl. TESSENOW 1979) und der Phosphorstoffwechsel besonders spezialierter Arten wie Acinetobacter calcoaceticus genannt.

Aus methodischen Gründen werden die Ergebnisse für die Versuchsreihe ohne hydromechanische Einwirkung getrennt von der Versuchsreihe unter hydromechanischer Einwirkung dargestellt. Der Vergleich beider Versuchsreihen erfolgt innerhalb der Zusammen­schau dieses Kapitels.

Phosphor-Remobilisierung ohne hydromechanische Einwirkung

Die geringsten Phosphorkonzentrationen (Abb. 42) wurden zu Beginn der Versuchsreihe gemessen (Basiswerte = Kontroller). Nach der für alle Versuchsansätze vorgeschalteten sechzehn-stündigen Absetzphase unter atmosphärischen Sauerstoffbedingungen (21% O₂) lagen die Phosphatbasiswerte (t = 0 Std.) zwischen 0,10 und 0,17 mg/l P. 48 Stunden später waren vor allem bei den anoxischen Versuchsansätzen erhebliche Phosphatzunahmen festzustellen. So stieg der Phosphorgehalt in den Ansätzen aus dem alten Teil des Aasees (SRalt) von 0,10 auf 0,45 mg/l P an, was einer Zunahme von 350 % entspricht. In den Ansätzen aus dem neuen Teil des Aasees (SRneu) war ein noch höherer Anstieg von 0,17 auf 1,07 mg/l P zu verzeichnen, eine Zunahme von 629 %. Im absoluten Vergleich der anoxischen Versuchsansätze nach 48 Stunden waren die Phosphatgehalte bei SRneu mit 1,07 mg/l P 2,4 mal so hoch wie bei SRalt mit 0,45 mg/l P.

Auch die Versuchsergebnisse der aeroben Ansätze nach 48 Stunden zeigen eine Zunahme der Phosphatgehalte, was sich auch mit den Ergebnissen anderer Untersuchungen deckt.

Abb. 42: Remobilisierungspotential der Sedimente des Münsterschen Aasees für Phosphor (SRP = soluble reactive phosphorus) in Abhängigkeit vom Sauerstoffgehalt in der Versuchstatmosphäre und unter Ausschluß hydromechanischer Einwirkungen.
Erwartungsgemäß fiel die Phosphatremobilisierung hier jedoch sehr viel geringer aus als bei den anoxischen Versuchsansätzen. So erhöhten sich die Phosphorkonzentrationen in den Ansätzen aus dem alten Teil des Aasees (SR_{alt}) von 0,13 auf 0,15 mg/l P. Die Remobilisierungsrate für Phosphor liegt dort dementsprechend bei 15 %. In den Ansätzen aus dem neuen Teil des Aasees (SR_{neu}) erhöhte sich der Phosphatspiegel des aeroben Ansatzes von 0,15 auf 0,45 mg/l P und steigerte sich damit um 200 %.

Im Vergleich zu SR_{alt} (0,15 mg/l P) lag der Phosphorgehalt von SR_{neu} nach 48 h unter aeroben Bedingungen mit 0,39 mg/l P, 2,6 mal so hoch.

Phosphor-Remobilisierung unter hydromechanischer Einwirkung

Auch bei dieser Versuchsserie (Abb. 43) wiesen die Kontrollen (t = 0 Std.) die vergleichsweise geringsten Phosphorkonzentrationen auf. Bei SR_{alt} lagen sie bei 0,25 und 0,26 mg/l P, bei SR_{neu} bei 0,40 und 0,41 mg/l P. Allerdings sind damit im Vergleich zum alten Aasee die Phosphorbasiswerte des neuen Aasees um 59 % höher.

Nach 48 Stunden ist wie bei der Versuchsreihe ohne hydromechanische Einwirkung insbesondere bei den anoxischen Versuchsansätzen eine beträchtliche Zunahme an löslich reaktivem Phosphat (SRP) zu verzeichnen. Im alten Aasee (SR_{alt}) stieg der Gehalt von 0,25 auf 0,77 mg/l P, im neuen Aasee (SR_{neu}) von 0,40 auf 1,14 mg/l P an. Die Remobilisierungsrate der anoxischen Versuchsansätze liegen damit bei 208 % für SR_{alt} und bei 185 % bei SR_{neu}.

Mit 1,14 mg/l P ist die absolute Phosphorkonzentration (SRP) nach 48 Stunden Anoxie im neuen Aasee anderthalb mal so hoch wie im alten. Bei den aeroben Ansätzen unter hydromechanischer Einwirkung ist im Gegensatz zu der Versuchsserie ohne hydromechanischer Einwirkung (s.o.) ein nur sehr geringer Phosphorzuwachs bzw. sogar eine - wenn auch geringe - Abnahme an SRP registrierbar. Im alten Aasee (SR_{alt}) sank der Phosphorgehalt nach 48 Stunden von 0,26 auf 0,22 mg/l P was einer Abnahme von 15 % entspricht. Im neuen Aasee (SR_{neu}) nahm er um 8 % von 0,38 auf 0,41 mg/l P geringfügig zu.

Abb. 43: Remobilisierungspotential der Sedimente des Münsterschen Aasees für Phosphor (SRP = solubler reaktiver Phosphor) in Abhängigkeit vom Sauerstoffgehalt in der Versuchsavhängigkeit (standardisierte Strömungssimulation).
Im Vergleich zu SR\textsubscript{alt} (0,22 mg/l P) erreichte SR\textsubscript{neu} nach 48 h unter aeroben Bedingungen mit 0,41 mg/l P einen um 1,9 mal höheren Phosphorpegel.

Zusammenfassend kann festgestellt werden, daß erhebliche Mengen des im Aaseesediment deponierten Phosphors als reaktives lösliches Phosphat (SRP) remobilisiert werden können und damit dem Stoffwechsel der Produzenten wieder zur Verfügung stehen. In Abhängigkeit vom Sauerstoffhaushalt, von durch Turbulenzen verursachten hydromechanischen Einwirkungen auf die Sedimentoberfläche und von der Art des Sedimentes sind folgende Remobilisierungszusammensetzungen für Phosphor beobachtbar:

1. Unter anoxischen Bedingungen ist die Intensität der Phosphor-Remobilisierung aus dem Aaseesediment am größten. Die maximalen Zuwachsraten in 48 Stunden betrugen für den alten Aasee (SR\textsubscript{alt}) 350 % und für den neuen Aasee (SR\textsubscript{neu}) 529 %.

2. Auch unter aeroben Bedingungen wird Phosphor aus dem Sediment freigesetzt. Hier liegen die maximalen Zuwachsraten für den alten Aasee (SR\textsubscript{alt}) bei 15 % und für den neuen Aasee (SR\textsubscript{neu}) bei 160 %.

3. Allein durch Turbulenzen verursachte mechanische Einwirkungen auf die Sedimentoberfläche bewirken einen Remobilisierungsschub, der eine Phosphorzuwachsrate von 104 % für SR\textsubscript{alt} und 153 % für SR\textsubscript{neu} zur Folge hat.

6. Der Vergleich der Anoxiansätze zeigt, daß sich die qualitative Zusammensetzung der Phosphorfraktionen in den Sedimenten des alten Aasees von der des neuen Aasees unterscheidet. Während sich nämlich der Gehalt an remobilisierbarem Phosphor durch hydromechanische Einwirkung im alten Aasee zusätzlich von 0,45 auf 0,77 mg/l P um 71 % erhöht, ist im neuen Aasee lediglich eine Steigerung um 7 % von 1,07 auf 1,14 mg/l P möglich.

4.1.6 Plankton

Insgesamt wurden 288 Taxa aus 10 Stämmen, 19 Klassen und 36 Ordnungen registriert.

\textbf{Phytoplankton}

162 (164) determinierte Taxa aus 5 (6) Stämmen, 9 (11) Klassen und 18 (20) Ordnungen bilden die Gesamtheit des aus dem Aasee stammenden Phytoplanktons (Tab. 4).

Die Klassen der Chlorophyceae und Bacillariophyceae stellen mit 54 (33 %) bzw. 36 Taxa (22 %) mehr als die Hälfte aller Vertreter des Phytoplanktons (Abb. 44). Es folgen die Cyanophyceae mit 16, die Euglenophyceae mit 15, die Conjugatophyceae mit 14 und die Chrysophyceae mit 12 Taxa. Xanthophyceae, Dinophyceae und Oedogonophyceae wei-

<table>
<thead>
<tr>
<th>St. CYANOPHYTA</th>
<th>Phacus tortus</th>
<th>Crucigenia rectangularis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kl. Cyanophyceae (Blaualgen)</td>
<td>Trachelomonas spp.</td>
<td>Dictiosphaerium ehrenbergium</td>
</tr>
<tr>
<td>Ordn. Chroococcales</td>
<td>St. DINOPHYTA</td>
<td>Dictiosphaerium pulchellum</td>
</tr>
<tr>
<td>Coelosphaerium kützingianum</td>
<td>Ceratium hirundinella</td>
<td>Micractinium pusillum</td>
</tr>
<tr>
<td>Gomphosphaeria naegeliana</td>
<td>Glenodinium cinctum</td>
<td>Oocystis marssonii</td>
</tr>
<tr>
<td>Microcystis aeruginosa</td>
<td>Gymnodinium aeruginosum</td>
<td>Oocystis parva</td>
</tr>
<tr>
<td>Microcystis flos-aquae</td>
<td>Gymnodinium spp.</td>
<td>Oocystis solitaria</td>
</tr>
<tr>
<td>Microcystis viridis</td>
<td>Peridinium tabulatum</td>
<td></td>
</tr>
<tr>
<td>Ordn. Oscillatorales</td>
<td>Pediastrum angulosum</td>
<td></td>
</tr>
<tr>
<td>Lyngbia contorta</td>
<td>Pediastrum boryanum</td>
<td></td>
</tr>
<tr>
<td>Oscillatoria formosa</td>
<td>Pediastrum clathratum</td>
<td></td>
</tr>
<tr>
<td>Oscillatoria lacustris</td>
<td>Pediastrum duplex</td>
<td></td>
</tr>
<tr>
<td>Oscillatoria limosa</td>
<td>Pediastrum gracillimum</td>
<td></td>
</tr>
<tr>
<td>Oscillatoria tenuis</td>
<td>Pediastrum integrum</td>
<td></td>
</tr>
<tr>
<td>Oscillatoria spp.</td>
<td>Pediastrum simplex</td>
<td></td>
</tr>
<tr>
<td>Ordn. Nostocales</td>
<td>Pediastrum sturnii</td>
<td></td>
</tr>
<tr>
<td>Arabaena flos-aquae</td>
<td>Pediastrum tetras</td>
<td></td>
</tr>
<tr>
<td>Aphanizomenon gracile</td>
<td>Scenedesmus acuminatus</td>
<td></td>
</tr>
<tr>
<td>Aphanizomenon flos-aquae</td>
<td>Scenedesmus acutus</td>
<td></td>
</tr>
<tr>
<td>Nostoc linckia</td>
<td>Scenedesmus armatus</td>
<td></td>
</tr>
<tr>
<td>Nostoc spp.</td>
<td>Scenedesmus bijugatus</td>
<td></td>
</tr>
<tr>
<td>St. EUGLENOPHTA</td>
<td>Scenedesmus longispira</td>
<td></td>
</tr>
<tr>
<td>Kl. Euglenophyceae (Augenflagellaten)</td>
<td>Scenedesmus obliquus</td>
<td></td>
</tr>
<tr>
<td>Ordn. Euglenales</td>
<td>Scenedesmus opoliensis</td>
<td></td>
</tr>
<tr>
<td>Euglena acus</td>
<td>Scenedesmus quadricauda</td>
<td></td>
</tr>
<tr>
<td>Euglena ehrenbergi</td>
<td>Schroederia spiralis</td>
<td></td>
</tr>
<tr>
<td>Euglena gracilis</td>
<td>Selenastrum bibrainum</td>
<td></td>
</tr>
<tr>
<td>Euglena intermedia</td>
<td>Siderocelis elegans</td>
<td></td>
</tr>
<tr>
<td>Euglena oxyuris</td>
<td>Sphaerocystis schroeteri</td>
<td></td>
</tr>
<tr>
<td>Euglena pisciformes</td>
<td>Tetraedron muticum</td>
<td></td>
</tr>
<tr>
<td>Euglena spirogyra</td>
<td>Tetrastrum spp.</td>
<td></td>
</tr>
<tr>
<td>Euglena tripteris</td>
<td>Ordn. Chlorococcales (kokkale Algen)</td>
<td></td>
</tr>
<tr>
<td>Euglena variabilis</td>
<td>Actinastrom hantzschii</td>
<td></td>
</tr>
<tr>
<td>Euglena viridis</td>
<td>Ankistrodesmus acicularis</td>
<td></td>
</tr>
<tr>
<td>Phacus longicauda</td>
<td>Ankistrodesmus angustus</td>
<td></td>
</tr>
<tr>
<td>Phacus oscillans</td>
<td>Botryococcus braunti</td>
<td></td>
</tr>
<tr>
<td>Phacus pleuronectes</td>
<td>Chlorella vulgaris</td>
<td></td>
</tr>
<tr>
<td>St. EUGLENOPHTA</td>
<td>Chlorococcum infusionum</td>
<td></td>
</tr>
<tr>
<td>Ordn. Chlorococcales</td>
<td>Chlorococcum</td>
<td></td>
</tr>
<tr>
<td>(kokkale Algen)</td>
<td>Chlorococcum multinucleatum</td>
<td></td>
</tr>
<tr>
<td>Ordn. Chlorococcales</td>
<td>Chlorococcum spp.</td>
<td></td>
</tr>
<tr>
<td>Ordn. Chlorococcales</td>
<td>Chodatella armata</td>
<td></td>
</tr>
<tr>
<td>Ordn. Chlorococcales</td>
<td>Coelastrum cambricum</td>
<td></td>
</tr>
<tr>
<td>Ordn. Chlorococcales</td>
<td>Coelastrum microporum</td>
<td></td>
</tr>
<tr>
<td>Ordn. Chlorococales (kokkale Algen)</td>
<td>Coelastrum reticulatum</td>
<td></td>
</tr>
<tr>
<td>Ordn. Chlorococales (kokkale Algen)</td>
<td>Coelastrum sphaericum</td>
<td></td>
</tr>
<tr>
<td>Ordn. Chlorococales (kokkale Algen)</td>
<td>Crucigenia fenestrata</td>
<td></td>
</tr>
<tr>
<td>Kl. Oedogoniophyceae</td>
<td>Schizosphaera crassa</td>
<td></td>
</tr>
<tr>
<td>Ordn. Oedogoniophyceae (Kappenring-Grünalgen)</td>
<td>Staurastrum coscinatum</td>
<td></td>
</tr>
<tr>
<td>Oedogonium crispum</td>
<td>Staurastrum irregularis</td>
<td></td>
</tr>
<tr>
<td>Oedogonium spp.</td>
<td>Ulothrix tenuissima</td>
<td></td>
</tr>
<tr>
<td>Ordn. Oedogoniophyceae (Kappenring-Grünalgen)</td>
<td>Ulothrix zonata</td>
<td></td>
</tr>
<tr>
<td>Ordn. Oedogoniophyceae (Kappenring-Grünalgen)</td>
<td>Ulothrix spp.</td>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 4:

<table>
<thead>
<tr>
<th>Kl. Conjugatophyceae (Jochalgen)</th>
<th>Ord. Heterosiphonales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirotaenia obscura</td>
<td>Vaucheria sessilis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordn. Mesotaeniales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirotaenia obscura</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordn. Desmidiales (Zieralgen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closterium acerosum</td>
</tr>
<tr>
<td>Closterium aciculare</td>
</tr>
<tr>
<td>Closterium acutum</td>
</tr>
<tr>
<td>Closterium ehrenbergii</td>
</tr>
<tr>
<td>Closterium kützingii</td>
</tr>
<tr>
<td>Closterium lunula</td>
</tr>
<tr>
<td>Closterium moniliferum</td>
</tr>
<tr>
<td>Closterium pronum</td>
</tr>
<tr>
<td>Euasterum spp.</td>
</tr>
<tr>
<td>Staurastrum gracile</td>
</tr>
<tr>
<td>Staurastrum paradoxum</td>
</tr>
<tr>
<td>Staurastrum tetracerum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordn. Zygnemales (Faden-Jochalgen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirogyra spp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>St. CHRYSOPHYTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kl. Xanthophyceae (Gelbgriñalgen)</td>
</tr>
<tr>
<td>Ordn. Heterococcales</td>
</tr>
<tr>
<td>Mischococcus confervicola</td>
</tr>
<tr>
<td>Ophiocytium capitatum</td>
</tr>
<tr>
<td>Ophiocytium cochleare</td>
</tr>
<tr>
<td>Tetraedriella quadrirseta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordn. Heterotrichales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribonema monochloron</td>
</tr>
<tr>
<td>Tribonema vulgare</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordn. Heterosiphonales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaucheria sessilis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kl. Chrysophyceae (Goldalgen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirogyra spp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordn. Chrysomonadales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrysococcus rufescens</td>
</tr>
<tr>
<td>Dinobryon cylindricum</td>
</tr>
<tr>
<td>Dinobryon divergens</td>
</tr>
<tr>
<td>Dinobryon sertularia</td>
</tr>
<tr>
<td>Dinobryon sociale</td>
</tr>
<tr>
<td>Dinobryon stipitatum</td>
</tr>
<tr>
<td>Dinobryon spp.</td>
</tr>
<tr>
<td>Mallomonas acaroides</td>
</tr>
<tr>
<td>Mallomonas caudata</td>
</tr>
<tr>
<td>Syncrypia volvox</td>
</tr>
<tr>
<td>Synura uvella</td>
</tr>
<tr>
<td>Uroglena volvox</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kl. Bacillariophyceae</th>
</tr>
</thead>
<tbody>
<tr>
<td>= Diatomeae (Kieselalgen)</td>
</tr>
<tr>
<td>Ordn. Centrales</td>
</tr>
<tr>
<td>Cyclotella comta</td>
</tr>
<tr>
<td>Cyclotella kützingiana</td>
</tr>
<tr>
<td>Melosira varians</td>
</tr>
<tr>
<td>Stephanodiscus hantzschii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordn. Pennales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipleura pellucida</td>
</tr>
<tr>
<td>Anomoneis sphaerophora</td>
</tr>
<tr>
<td>Asterionella formosa</td>
</tr>
<tr>
<td>Caloneis amphisbaena</td>
</tr>
<tr>
<td>Cocconeis pediculus</td>
</tr>
<tr>
<td>Cymatopleura elliptica</td>
</tr>
<tr>
<td>Cymatopleura solea</td>
</tr>
<tr>
<td>Diatoma elongatum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>St. MYCOPHYTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kl. Oomycetes</td>
</tr>
<tr>
<td>Ordn. Leptomatales</td>
</tr>
<tr>
<td>Leptomitus lacteus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fungi imperfecti</th>
</tr>
</thead>
<tbody>
<tr>
<td>(= Deuteromycetes)</td>
</tr>
<tr>
<td>Ordn. Monilales</td>
</tr>
<tr>
<td>Fusarium aquaeductum</td>
</tr>
</tbody>
</table>

sen jeweils nur 7, 6 und 2 Taxa auf. Aus den in Abb. 44 nicht aufgeführten Klassen der Mycophyta wurden 2 Arten bestimmt.

Die charakteristischen Phytoplankter des Aasees entstammen den Klassen Cyanophyceae, Euglenophyceae, Chlorophyceae, Conjugatophyceae, Xanthophyceae, Chrysophyceae und Bacillariophyceae. Kennzeichnend für sie sind einerseits die dominierenden Individuendichten und andererseits die kontinuierliche Präsenz.
Phytoplankton

Cyanophyceae

Euglenophyceae

Dinophyceae (6)

Chlorophyceae

Bacillariophyceae

Cyanophyceae

Euglenophyceae

Chlorophyceae

Xanthophyceae (7)

Conjugatophyceae

Oedogoniophyceae (2)

Summe aller Taxa (ohne Mycophyta) = 162

Cyanophyceae (Abb. 45)

Euglenophyceae

Chlorophyceae

Conjugatophyceae

Xanthophyceae

Chrysophyceae

Bacillariophyceae (Abb. 47)

Zooplankton

Die 124 determinierten Taxa des Zooplanktons (Tab. 5) verteilen sich auf 4 Stämme, 8 Klassen und 16 Ordnungen.

Zooplankton

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoomastigia (1)</td>
<td>27</td>
</tr>
<tr>
<td>Rhizopoda</td>
<td>14</td>
</tr>
<tr>
<td>Crustacea</td>
<td>29</td>
</tr>
<tr>
<td>Ciliata</td>
<td>49</td>
</tr>
<tr>
<td>Gastrotricha (2)</td>
<td></td>
</tr>
<tr>
<td>Nematodes (1)</td>
<td></td>
</tr>
<tr>
<td>Clitellata (1)</td>
<td></td>
</tr>
<tr>
<td>Rotatoria</td>
<td></td>
</tr>
</tbody>
</table>

Summe aller Taxa = 124

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. PROTOZOA</td>
<td>Urozoa bütschlii</td>
</tr>
<tr>
<td>Kl. Zoomastigia</td>
<td>Ordn. Peritricha</td>
</tr>
<tr>
<td>(Zooflagellaten)</td>
<td>Campanella umbellaria</td>
</tr>
<tr>
<td>Ordn. Protomonadida</td>
<td>Carchesium pectinatum</td>
</tr>
<tr>
<td>Bodo saltans</td>
<td>Epistyliis rotans</td>
</tr>
<tr>
<td>Kl. Rhizopoda</td>
<td>Vorticella campanula</td>
</tr>
<tr>
<td>(Wurzelfüßler)</td>
<td>Vorticella convallaria</td>
</tr>
<tr>
<td>Ordn. Amoebida</td>
<td>Vorticella similis</td>
</tr>
<tr>
<td>(Nacktamöben)</td>
<td>Zoothamnium ramosissimum</td>
</tr>
<tr>
<td>Ordn. Testacea</td>
<td>Brachionus diversicornis</td>
</tr>
<tr>
<td>(Schalenamöben)</td>
<td>homoceras</td>
</tr>
<tr>
<td>Arcella artocrea</td>
<td>Brachionus leydigi</td>
</tr>
<tr>
<td>Arcella discoides</td>
<td>Brachionus leydigi</td>
</tr>
<tr>
<td>Arcella hemisphaerica</td>
<td>tridentatus</td>
</tr>
<tr>
<td>Arcella megastoma</td>
<td>Brachionus quadridentatus</td>
</tr>
<tr>
<td>Arcella vulgaris</td>
<td>Brachionus ureolaris</td>
</tr>
<tr>
<td>Awerintzewia cyclostoma</td>
<td>Brachionus spp.</td>
</tr>
<tr>
<td>Cyphoderia margaritacea</td>
<td>Cephalodella forficata</td>
</tr>
<tr>
<td>Diffugia acuminata</td>
<td>Cephalodella gibba</td>
</tr>
<tr>
<td>Nadinella tonella</td>
<td>Colurella obtusa</td>
</tr>
<tr>
<td>Nebela griseola</td>
<td>Colurella unicata</td>
</tr>
<tr>
<td>Ordn. Spirotricha</td>
<td>Conochilus unicornis</td>
</tr>
<tr>
<td>Arcella artoidea</td>
<td>Encephalodella limnetica</td>
</tr>
<tr>
<td>Arcella discoides</td>
<td>Filinia longiseta longiseta</td>
</tr>
<tr>
<td>Arcella hemisphaerica</td>
<td>Filinia longiseta passa</td>
</tr>
<tr>
<td>Arcella megastoma</td>
<td>Filinia longiseta spp.</td>
</tr>
<tr>
<td>Arcella vulgaris</td>
<td>Kellicottia longispina</td>
</tr>
<tr>
<td>Awerintzewia cyclostoma</td>
<td>Keratella cochlearis</td>
</tr>
<tr>
<td>Cyphoderia margaritacea</td>
<td>Keratella quadrata</td>
</tr>
<tr>
<td>Diffugia acuminata</td>
<td>Keratella ticinensis</td>
</tr>
<tr>
<td>Nadinella tonella</td>
<td>Notolca squamula</td>
</tr>
<tr>
<td>Nebela griseola</td>
<td>Polyarthra dolichoptera</td>
</tr>
<tr>
<td>Ordn. Spirotricha</td>
<td>Polyarthra major</td>
</tr>
<tr>
<td>Arcella artocrea</td>
<td>Polyarthra remata</td>
</tr>
<tr>
<td>Arcella discoides</td>
<td>Polyarthra vulgaris</td>
</tr>
<tr>
<td>Arcella hemisphaerica</td>
<td>Polyarthra spp.</td>
</tr>
<tr>
<td>Arcella megastoma</td>
<td>Pompholyx complanata</td>
</tr>
<tr>
<td>Arcella vulgaris</td>
<td>Pompholyx sulcata</td>
</tr>
<tr>
<td>Awerintzewia cyclostoma</td>
<td>Rhinoglena frontalis</td>
</tr>
<tr>
<td>Cyphoderia margaritacea</td>
<td>Rhinoglena neptunia</td>
</tr>
<tr>
<td>Diffugia acuminata</td>
<td>Synchaeta oblonga</td>
</tr>
<tr>
<td>Nadinella tonella</td>
<td>Synchaeta pectinata</td>
</tr>
<tr>
<td>Nebela griseola</td>
<td>Synchaeta tremula</td>
</tr>
<tr>
<td>Arcella artistica</td>
<td>Testudinella parva</td>
</tr>
<tr>
<td>Arcella discoides</td>
<td>Trichotria pocillum</td>
</tr>
<tr>
<td>Arcella hemisphaerica</td>
<td>Kl. Gastrotricha</td>
</tr>
<tr>
<td>Arcella megastoma</td>
<td>(Baughärningar)</td>
</tr>
<tr>
<td>Arcella vulgaris</td>
<td>Ordn. Chaetonotoidea</td>
</tr>
<tr>
<td>Awerintzewia cyclostoma</td>
<td>Chaetonotus macrochaetus</td>
</tr>
</tbody>
</table>

56
Fortsetzung Tab. 5:

Lepidoderma squamatum
Alona quadrangularis
Alona rectangula

Kl. Nematodes
Bosmina coregoni
Bosmina longirostris

Ordn. Rhabditida
Camptocercus rectirostris
Ceriodaphnia quadrangula

Diplogaster rivalis
Ceriodaphnia reticulata

St. ANNELILDA
Daphnia cucullata

Kl. Clitellata
Daphnia longispina

Ordn. Oligochaeta
Daphnia magna

Stylaria lacustris
Daphnia pulex pulex

U.Kl. Phyllopoda
Leptodora kindti

U.Ord. Branchiura
Macrothrix laticornis

St. ARTHROPODA
Moina brachiatia

Kl. Crustacea
Pseudochydorus globosus

U.Kl. Ostracoda
Scapholeberis mucronata

U.Ord. Cladocera
Sida crystallina

Acroperus harpae
Simcephalus vetulus

Alona costata
U.Kl. Ostracoda (Muschelkrebs)

U.Kl. Copepoda
Argulus foliaceus (Fischläuse)

Rotatoria

Crustacea

Das Auftreten von *Daphnia* spec. ähnelte 1993 dem von *Bosmina longirostris*. Auch die Individuendichte ist vergleichbar (Maximum Anfang September 54 Ind./l). 1994 entwickelte sich die Daphnienpopulation von April an nahezu stetig und erreichte zum Ende des Untersuchungszeitraumes, Mitte August, 141 Ind./l.

Abb. 50: Die Cladocerenart *Bosmina longirostris* könnte als Leit- oder Charakterart für das Zooplankton des Münsterschen Aasees angesehen werden; sie ist fast immer in erklägbaren Dichten präsent (Vergr. = 185x).

Die Copepoden werden hier in ihrer Gesamtheit aufgeführt, wobei zwischen adulten Copepoden, Copepodiden und Naupliuslarven differenziert wird.

Für das Zooplankton läßt sich abschließend festhalten:

4.1.7 Makrozoobenthon

Das Makrozoobenthon des Aaseeprofundals beschränkt sich auf *Chironomus* spp. aus der Plumosus-Gruppe und auf Arten aus der Oligochaetenfamilie der Tubificidae, z. B. *Tubifex* spp. und *Limnodrilus* spp..

Für die Zuordnung von *Chironomus* spp. wurden neben dem Larvenmaterial auch frischgeschlüpfte Imagines und deren Exuvien herangezogen.

Bezeichnend für die Makrozoobenthongesellschaft des Aasees sind zum einen die Artenarmut und zum anderen der Individuenreichtum, wie dies exemplarisch in Abb. 51 für die Gruppe der Tubificiden demonstriert ist.

![Abb. 51: Undulierende Tubificiden (Schlammröhrenwürmer) in ihren Wohnröhren an der Oberfläche von Aaseesediment in einem Versuchsgefäß (Münsterscher Aasee 1994).](image-url)

4.2 Ergebnisse der Untersuchung des Wassereinzugsgebietes des Aasees

4.2.1 Wasseranalysen

Unter dem Wassereinzugsgebiet des Aasees sind in diesem Untersuchungsteil die in den Aasee einmündenden Fließgewässer im engeren Sinne zu verstehen. Gemeint sind die Münstersche Aa, der Meckelbach und der Gievenbach. Für die entscheidenden Aussagen wird im Folgenden auf die Standorte AAM, MB und GB näher eingegangen (sämtliche Ergebnisse, auch der übrigen Standorte GBU, MB Ro, KA Ro und MB Au, s. VEST 1997).

Der Spektrale Absorptionskoeffizient bei 436 nm (SAK_{436 nm})

Die drei Ganglinien für Gievenbach, Aa und Meckelbach (Abb. 52) verlaufen weitgehend parallel und in gleichen Größenordnungen. Die Mittelwerte bewegen sich 1993 zwischen
2,1 m⁻¹ (GB) und 1,3 m⁻¹ (AaS, MB). Auffällig sind Spitzenwerte, die im Juli und im Dezember 1993 bei allen drei Fließgewässern auftraten. Die Maxima wurden hierbei mit 9,5 m⁻¹ und 5,6 m⁻¹ im Gievenbach gemessen.

Der Spektrale Absorptionskoeffizient bei 254 nm (SAK_{254 nm})

Die Tendenzen verlaufen beim SAK_{254 nm} (Abb. 53) relativ ähnlich wie bei den Ganglinien für den SAK_{365 nm}. 1993 betrug der höchste Jahresmittelwert 17,5 m⁻¹ (GB), der niedrigste 15,8 m⁻¹ (AaS).

Auch hier wurden, wie schon oben, die Höchstwerte in den Monaten Juli und Dezember 1993 im Gievenbach gemessen. Sie betrugen 36,0 m⁻¹ und 41,0 m⁻¹.

Die Wassertemperatur

Der pH-Wert

Insbesondere die Aa erreicht weiter unterhalb (AaM) zeitweise Höchstwerte, die weit über dem genannten Maximum der Stelle AaS im August 1993 liegen. So wurde beispielsweise im Mündungsbereich der Aa in den Aasee (AaM) am 22.08.1994 um 17.00 Uhr MESZ ein absoluter Spitzenwert von 9,6 gemessen. An der gleichen Stelle war 9 Stunden zuvor um 8.00 Uhr noch ein pH von 9,1 festgestellt worden. Zum Vergleich: Die Allgemeine Güteanforderung (LWA 1991) läßt eine Spanne von pH 6,5 - 8,5 zu. Vor allem hinsichtlich der Auswirkungen auf das Ammonium-Ammoniak-Gleichgewicht (vgl. hierzu auch Ausf. in Kap. 4.1.2) handelt es sich hierbei um relevante Maximalwerte. So wurde am 22.08.1994 im Bereich der Aamündung (AaM) ein massives Fisch- und Entensterben beobachtet.

Die Redoxspannung

Die elektrolytische Leitfähigkeit

Abb. 52: Spektraler Absorptionskoeffizient (436 nm) der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [m$^{-1}$].

Abb. 53: Spektraler Absorptionskoeffizient (254 nm) der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [m$^{-1}$].

Abb. 54: Wassertemperatur der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [°C].

Abb. 56: Redoxspannung der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mV].

Abb. 57: Elektrolytische Leitfähigkeit der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [µS/cm].

Der Sauerstoff

Die Sauerstoffversorgung (Abb. 58 u. 59) ist im Gievenbach (GB) am höchsten. 1993 lag sie im Mittel bei 10,6 mg/l O_2 (95 %). Am niedrigsten waren die Sauerstoffverhältnisse im Meckelbach (MB). Dort wurden für 1993 8,1 mg/l O_2 (73 %) ermittelt. Die Aa (AaS) lag mit 9,6 mg/l O_2 (86 %) dazwischen.

Die allgemein knappere Sauerstoffsituation im Meckelbach (MB) wird durch die Minima noch deutlicher. Sie wurden im Juni 1993 und im Juni 1994 gemessen und betrugen 4,1 mg/l O_2 (40 %) bzw. 4,8 mg/l O_2 (47 %). Der Grenzwert der Allgemeinen Güteanforderungen (LWA 1991) liegt bei ≤ 6 mg/l O_2. Auch die Aa (AaS) lag mit ihren Sauerstoffgehalten zeitweise deutlich unterhalb dieser Marge, z. B. im Juni 1994 mit 5,6 mg/l O_2 (60 %). Im weiteren Verlauf der Aa im Bereich der Aaseemündung (AaM) wurde im Juli 1994 ein Minimum mit 3,6 mg/l O_2 (37 %) gemessen. Es ist damit noch niedriger als jenes des Meckelbaches (MB, s.o.).

Der Biochemische Sauerstoffbedarf nach 5 Tagen Zehrung ohne ATH

als Nitrifikationshemmer (Abb. 60)

Die Ganglinien aller drei Fließgewässer verlaufen weitgehend parallel. Mit Durchschnittswerten von 4,7 mg/l O_2 1993 wies der Meckelbach (MB) deutlich höhere Belastungen mit leicht abbaubaren organischen Substanzen auf als die Aa (AaS) mit 2,5 mg/l O_2 und der Gievenbach (GB) mit 2,0 mg/l O_2. Während sich über die meiste Zeit hin der BSB3 im Bereich von 0,5 bis knapp 5,0 mg/l O_2 bewegte, wurden im Februar 1993 bei allen drei Gewässern erhöhte Werte von 7,9 bis 11,9 mg/l O_2 registriert. Zusätzlich fallen vor allem Spitzen des Meckelbachs (MB) auf, die die oben genannte „Baseline“ von maximal 5,0 mg/l O_2 mit Maxima von 19,3 mg/l O_2 im Juni 1993 und 10,1 mg/l O_2 im Juli 1994 deutlich überlagern.

Der Biochemische Sauerstoffbedarf nach 5 Tagen Zehrung mit ATH

als Nitrifikationshemmer (Abb. 61)

Die BSB3-Situation mit ATH gleicht nahezu derjenigen ohne. Allerdings weist der Meckelbach im Unterschied zu den vorhergehenden BSB3-Jahresgängen ohne ATH keine zusätzlichen Spitzen auf. Die Mittelwerte liegen 1993 bei allen drei Fließgewässern bei 2,3 mg/l O_2. Bis auf die Maxima im Februar 1993, die zwischen 10,4 und 12,3 mg/l O_2 liegen, wird während der gesamten Untersuchungszeit der Richtwert der Allgemeinen Güteanforderungen (LWA 1991) von ≤ 5 mg/l O_2 nicht überschritten.

Der Chemische Sauerstoffbedarf

Abb. 58: Sauerstoffkonzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l O₂].

Abb. 59: Sauerstoffsättigung der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [% O₂].

Abb. 60: BSB₅ ohne ATH (Allylthioharnstoff) der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l O₂].
Abb. 61: BSB₅ mit ATH (Allylthioharnstoff) der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l O₂].

... AGA-Grenzwert: ≤ 5 mg/l O₂ (vgl. LWA 1991).

Abb. 62: CSB der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l O₂].

... AGA-Grenzwert: ≤ 20 mg/l O₂ (vgl. LWA 1991).

Abb. 63: Nitratkonzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l NO₃-N].

... AGA-Grenzwert: ≤ 8 mg/l NO₃-N (vgl. LWA 1991).
Insgesamt betrachtet sind die Unterschiede zwischen den Gewässern nicht sehr groß. Auf­fallend ist allerdings, daß die CSB-Werte aller drei Fließgewässer regelmäßig, teilweise erheblich, über dem AGA-Grenzwert von \(\leq 20 \text{ mg/l } \text{O}_2 \) (LWA 1991) liegen.

Das Nitrat
Nitrat spielt neben dem Phosphat die wichtigste Rolle als Eutrophierungsfaktor. Die Nitratkonzentrationen (Abb. 63) liegen 1993 im Mittel bei 5,6 mg/l N (GB), 6,0 mg/l N (AaS) und 11,0 mg/l N (MB). Während Aa und Gievenbach vergleichbare Konzentrationen aufweisen, liegt der Meckelbach mit 11,0 mg/l N deutlich darüber. Dies belegen auch die Maximalwerte: Der Meckelbach (MB) erzielte 19,1 mg/l N im August 1993 und 17,6 mg/l N im August 1994. Bei Aa und Gievenbach beliefen sich die höchsten Nitratgehalte auf Werte zwischen 8,1 und 11,8 mg/l N.

Der Gievenbach ist dem Nitratgehalt zufolge in die Belastungsstufe III einzuordnen (KLEE 1991), während Aa und Meckelbach in die Belastungsstufe III - IV fallen. Im Vergleich mit der Forderung der AGA (LWA 1991) von \(\leq 8 \text{ mg/l } \text{NO}_3^- \text{N} \) liegt der Meckelbach fast grundsätzlich deutlich darüber, aber auch die Aa überschreitet diesen Grenzwert fast regelmäßig, während er beim Gievenbach meistens nicht erreicht wird.

Das Nitrit
Die Bedeutung des Nitrits (Abb. 64) liegt vor allem in seiner Relevanz als Toxin. Für Fische wirkt Nitrit toxisch ab Konzentrationen von 0,2 - 0,3 mg/l N; in Ausnahmefällen reichen sogar schon 0,01 mg/l N aus (GUNKEL 1994).

Während Gievenbach und Aa 1993 durchschnittlich zwischen 0,05 und 0,07 mg/l N aufwiesen, waren es für den Meckelbach 0,30 mg/l N. Die Amplituden der Nitritkonzentrationen betrugen für den Gievenbach 0,02 - 0,13 mg/l N, für die Aa 0,01 - 0,23 mg/l N und für den Meckelbach sogar 0,06 - 1,28 mg/l N.

Insgesamt betrachtet ist die Nitritsituation vor allem im Meckelbach (MB) alarmierend. Er weist sehr häufig toxische Nitritgehalte auf und ist nach KLEE (1991) der Belastungsstufe IV, also der Stufe mit der größtmöglichen Belastung zuzuordnen. Aber auch die beiden anderen Fließgewässer, Gievenbach und Aa erfüllen keinesfalls die von der EG-Richtlinie für Fischgewässer (LWA 1991) geforderten Richtwerte von < 0,003 mg/l \(\text{NO}_2^- \text{N} \) für Salmoniden-Gewässer bzw. von < 0,009 mg/l \(\text{NO}_2^- \text{N} \) für Cypriniden-Gewässer.

Das Ammonium
Für das Ammonium ergeben sich 1993 für Gievenbach (GB) und Aa (AaS) Jahresdurchschnittswerte, die zwischen 0,17 und 0,18 mg/l N liegen (Abb. 65). Der Jahresdurchschnittswert des Meckelbaches (MB) von 1,27 mg/l N für 1993 zeigt eine Belastungssituation, die um den Faktor 7 höher ist. Die Schwankungsbreiten betragen für den Gievenbach (GB) 0,02 - 0,61 mg/l N, für die Aa (AaS) nicht nachweisbare Ammoniumkonzentrationen bis maximal 0,59 mg/l N und für den Meckelbach 0,10 - 5,40 mg/l N. Auch diese Sachverhalte machen den qualitativen Unterschied der Belastungssituationen von Gievenbach und Aa einerseits und Meckelbach andererseits noch mal deutlich. Der Meckelbach erfüllt hierbei in keiner Weise den AGA-Grenzwert von \(\leq 1 \text{ mg/l } \text{NH}_4^- \text{N} \) (LWA 1991); er entspricht der Belastungsstufe III-IV, während Gievenbach und Aa in die Belastungsstufe II zuzuordnen sind (KLEE 1991).
Abb. 64: Nitritkonzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l NO$_2$-N].
- fischtoxische Konzentration: ≥ 0,2 mg/l NO$_2$-N (vgl. GUNKEL 1994).

Abb. 65: Ammoniumkonzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l NH$_4$-N].
- AGA-Grenzwert: ≤ 1 mg/l NH$_4$-N (vgl. LWA 1991).

Abb. 66: Ammoniakkonzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l NH$_3$-N].
- EG-Grenzwert für Fischgewässer < 0,02 mg/l NH$_3$-N (= 0,024 mg/l NH$_3$; vgl. LWA 1991).
Das Ammoniak

Die Bildung von Ammoniak ist abhängig vom Ammonium-Ammoniak-Gleichgewicht (vgl. Kap. 4.1.2.), welches durch die Temperatur und vor allem durch den pH moduliert wird.

Mit durchschnittlich 0,025 mg/l NH₃-N (1993) weist der Meckelbach (MB) 8mal soviel Ammoniak auf wie Gievenbach (GB) und Aa (AaS) mit jeweils 0,003 mg/l N (Abb. 66). Die starke Belastung des Meckelbaches durch Ammoniak im Vergleich mit den anderen beiden Fließgewässern zeigen auch die unterschiedlichen Amplituden. Während sie für Gievenbach und Aa von nicht nachweisbaren Konzentrationen bis maximal 0,011 mg/l N reichen, macht sie beim Meckelbach 0,001 bis 0,135 mg/l N aus. Der Grenzwert der EG-Richtlinie für Fischgewässer (LWA 1991) von 0,02 mg/l NH₃-N wurde hierbei vom Meckelbach regelmäßig überschritten.

Das ortho-Phosphat (SRP = lösliches reaktives Phosphat)

Am niedrigsten ist der mittlere ortho-Phosphat-Gehalt (Abb. 67) für 1993 im Gievenbach (GB) mit 0,07 mg/l P. Es folgt der Meckelbach (MB) mit 0,15 mg/l P. In der Aa (AaS) wurde 1993 der höchste Jahresdurchschnittswert ermittelt; er betrug 0,34 mg/l P. Damit ist er fast 5mal so hoch wie im Gievenbach und etwa zweimal so hoch wie im Meckelbach. Während im Gievenbach Höchstkonzentrationen von 0,21 mg/l P und im Meckelbach von 0,33 mg/l P gemessen wurden, lag das Maximum der Aa bei 0,94 mg/l P.

Das Gesamtphosphat (TP = Gesamtphosphor)

Die Relationen beim Gesamtphosphatgehalt der Fließgewässer (Abb. 68) entsprechen etwa denen der ortho-Phosphatgehalte. So wurden 1993 für den Gievenbach (GB) 0,09 mg/l P ermittelt, für den Meckelbach (MB) 0,21 mg/l P und für die Aa (AaS) 0,41 mg/l P. Die Allgemeinen Güteanforderungen (LWA 1991) sehen einen Grenzwert von ≤ 0,3 mg/l P vor. Die Aa liegt deutlich darüber, während Gievenbach und Meckelbach den Grenzwert nicht erreichen.

Maximal wurden Werte von 0,24 mg/l P beim Gievenbach, 0,30 mg/l P beim Meckelbach und 1,88 mg/l P bei der Aa gemessen.

Das Borat (Abb. 69)

Im Schnitt liegen die Borgehalte 1993 für den Gievenbach bei 0,01, für die Aa bei 0,04 und für den Meckelbach bei 0,10 mg/l B. Der natürliche geogene Boratgehalt liegt bei 0,01 mg/l B (DIETZ 1975). Der Gievenbach entspricht im Prinzip diesem Wert und kann somit als interner Vergleichsstandard angesehen werden. Dagegen liegt die Aa um den Faktor 4 und der Meckelbach sogar um den Faktor 10 darüber. Spitzenwerte von 0,18 mg/l B bei der Aa und 0,40 mg/l B beim Meckelbach unterstreichen den Befund und deuten auf Belastungen durch Haushaltswasser hin. Beim Gievenbach wurden lediglich Maximalwerte von 0,03 mg/l B gemessen.

Das Calcium

Die Calciumgehalte der drei Fließgewässer (Abb. 70) erreichten naturgemäß recht hohe Werte, da es sich um Carbonatbäche handelt. Die Werte lagen 1993 im Mittel bei 113 mg/l für den Gievenbach (GB), für die Aa (AaS) bei 125 mg/l und für den Meckelbach (MB) bei 109 mg/l. Je nach Witterungslage schwankten die Calciumkonzentrationen von 22 bis 196 mg/l. Alle drei Ganglinien verlaufen parallel und meist fast deckungsgleich.
Abb. 67: ortho-Phosphatphosphorkonzentration (SRP = soluble reactive phosphorus) der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l P].

Das Magnesium
Die Magnesiumkonzentrationen (Abb. 71) befanden sich in einer Spanne von maximal 22 mg/l und Minimalgehalten unterhalb der Nachweisgrenze. Die Durchschnittskonzentrationen für Magnesium bewegten sich 1993 im Bereich von 4,8 (AaS) und 8 mg/l (MB).

Das Hydrogencarbonat
Die Ganglinien der drei Fließgewässer für Hydrogencarbonat (Abb. 72) verlaufen weitgehend parallel und bewegen sich in den gleichen Dimensionen. Im Jahresdurchschnitt 1993 wurden Konzentrationen zwischen 257 und 306 mg/l vorgefunden.

Das Carbonat
Carbonat (Abb. 73) spielte bei den Fließgewässern fast keine Rolle. Es konnte lediglich für den Gievenbach (GB) im Juni 1993 einmalig ein Wert von 25,2 mg/l ermittelt werden.

Das Chlorid
1993 betrugen die Chloridkonzentrationen (Abb. 74) im Mittel für den Gievenbach 44 mg/l, für die Aa 44 mg/l und für den Meckelbach 66 mg/l. Demnach waren Gievenbach und Aa in die Belastungsstufe III, der Meckelbach in die Belastungsstufe III - IV einzurunden (KLEE 1991). Die Amplituden sind teilweise erheblich. Sie betrugen für den Gievenbach 9 - 134 mg/l, für die Aa 30 - 67 mg/l und für den Meckelbach 13 - 124 mg/l.

Das Eisen
Die Gehalte an Eisen lagen im Jahresdurchschnitt 1993 zwischen Werten von 0,08 und 0,11 mg/l Fe^{2+3+} (Abb. 75). Maximal wurden Gesamteisengehalte von 0,44 mg/l im Gievenbach, 33 mg/l in der Aa und 21 mg/l im Meckelbach registriert. Die gemessenen Mindestgehalte betrugen wenigstens 0,01 mg/l. Hinsichtlich des Verhältnisses von Eisen-II : Eisen-III waren i. d. R. die Eisen-II-Gehalte anderthalbmal höher als die Eisen-III-Gehalte (Abb. 76 u. 77).

Zusammenfassend läßt sich feststellen, daß die zum Teil sehr hohen Nährstoffkonzentrationen die entscheidenden Klassifizierungskriterien für die in den Aasee entwässernden Fließgewässer sind. Die sich hieraus ergebenden Belastungssituationen sind gestuft zu betrachten:
2. Die Münstersche Aa: Sie fällt durch vergleichsweise hohe Phosphatgehalte auf. Dies entspricht zwar lediglich der Belastungsstufe II-III, darf aber nicht darüber hinwegtäuschen, daß sie in der Regel doppelt so hohe Phosphatgehalte aufweist wie der Meckelbach und etwa viermal so hohe wie der Gievenbach.
Hinsichtlich der Stickstoffkomponenten ist eine eindeutige Belastungssituation gegeben. So ist die Aa bezüglich des Nitrates z. B. in die Belastungsstufe III-IV mit Tendenz nach III einzurunden.
3. Der Gievenbach: Er schneidet im Vergleich am besten ab. Vor allem bezüglich der
Abb. 70: Calciumkonzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l Ca].

Abb. 71: Magnesiumkonzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l Mg].

Abb. 72: Hydrogencarbonatkonzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l HCO₃].
Abb. 73: Carbonatkonzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l CO_3^2].

Abb. 74: Chloridkonzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l Cl].

Abb. 75: Gesamt-Eisen-Konzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l Fe].
Abb. 76: Eisen-III-Konzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l Fe].

Abb. 77: Eisen-II-Konzentration der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis September 1994 [mg/l Fe].

Abb. 78: Abflußmengen (Q) der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis Juni 1994 [l/s].
Phosphatgehalte werden gute Verhältnisse angetroffen (Belastungsstufe 1-II). Ein Blick auf das Nitrat zeigt aber auch hier eine eindeutige Belastungssituation (Stufe III-IV mit Tendenz nach III).

4. Bis zu 5-fach erhöhte Boratgehalte in der Aa und bis zu 12-fach erhöhte im Meckelbach weisen auf erhebliche Beeinflussungen anthropogenen Ursprungs, z. B. durch Haus­haltsabwässer hin.

4.2.2 Abflußmessungen

Tab. 6: Mittlere Abflussmengen (MQ) der drei Fließgewässer Aa, Meckelbach und Gievenbach sowie deren prozentuale Anteile (1993)

<table>
<thead>
<tr>
<th>Fließgewässer</th>
<th>MQ [l/s]</th>
<th>Anteil [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaS</td>
<td>838</td>
<td>80,0</td>
</tr>
<tr>
<td>MB</td>
<td>154</td>
<td>14,7</td>
</tr>
<tr>
<td>GB</td>
<td>56</td>
<td>5,3</td>
</tr>
<tr>
<td>Σ (AaS+MB+GB)</td>
<td>1048</td>
<td>100,0</td>
</tr>
</tbody>
</table>

1993 beläuft sich die Summe der mittleren Abflußmengen (MQ) aller drei Fließgewässer auf 1048 l/s. Hierbei nimmt die Aa mit 838 l/s, was einem Anteil von 80 % entspricht, eine dominierende Stellung ein. Für die drei Fließgewässer ergibt sich folgende Abstufung:

MQ_Aa >> MQ_Meckelbach > MQ_Gievenbach.

Allein hieraus ist das tatsächliche Abflußverhalten der drei Fließgewässer jedoch noch nicht erkennbar. Da neben den klimatischen Bedingungen, insbesondere die des Niederschlages, auch Faktoren wie Größe und strukturelle Beschaffenheit des Einzugsgebietes eine entscheidende Rolle spielen, gibt hier die Abflußspende (q) Aufschluß. Sie hängt vom Abfluß (Q) und von der Flächengröße des Einzugsgebietes (F) ab:

\[q = Q / F \text{ [l/(s \cdot km^2)]} \]

Die Verhältnisse von Aa, Meckelbach und Gievenbach zeigen beim Vergleich der Abflußspenden im Gegensatz zu den Abflußmengen ein ganz anderes Bild (vgl. Tab. 7): 1993 beträgt die durchschnittliche Abflußspende (Mq) für den Meckelbach 13 l/(s \cdot km²), während die Aa mit 9 l/(s \cdot km²) deutlich darunter liegt. Der Gievenbach weist mit 8 l/(s \cdot km²) ein ähnliches Abflußverhalten wie die Aa auf.
Tab. 7: Einzugsgebietsgröße und mittlere Abflusspenden (Mq) von Aa, Meckelbach und Gievenbach (1993).

<table>
<thead>
<tr>
<th>Einzugsgebiet</th>
<th>Größe [km²]</th>
<th>Mq [l/(s · km²)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaS</td>
<td>89</td>
<td>9</td>
</tr>
<tr>
<td>MB</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>GB</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

4.2.3 Frachten

Die Gesamtfracht (Abb. 79)

Die Gesamtfracht (GF) hängt einerseits von der Abflußmenge (Q) (vgl. Kap 4.2.2), andererseits von der Gesamtmassenkonzentration (GK) aller im Wasser gelösten Ionen ab. Das Ausmaß der Gesamtmassenkonzentration kommt indirekt durch die elektrolytische Leitfähigkeit (K) (vgl. Kap 4.2.1) zum Ausdruck. Unter Berücksichtigung eines Proportionalitätsfaktors von 0,725 (HÖLTING 1992) ergeben sich folgende Umrechnungsformeln:

\[
GK \text{[mg/l]} = K \text{[µS cm}^{-1}\text{]} \times 0,725 \text{[mg l}^{-1}\text{ cm} \cdot \text{µS}^{-1}} \quad (1)
\]

\[
GF \text{[g/s]} = GK \text{[mg l}^{-1}\text{]} \times Q \text{[l s}^{-1}] \times 10^{-3} \quad (2)
\]

Die Aa (AaS) wies 1993 mit einer durchschnittlichen Gesamtfracht von 437 g/s über 6mal soviel im Wasser gelöste Ionen wie der Meckelbach (MB: 70 g/s) und sogar fast 18mal soviel wie der Gievenbach (GB: 25 g/s) auf. Somit stammten 82,3 % der Fließgewässerfracht aus der Aa, 13,1 % aus dem Meckelbach und 4,6 % aus dem Gievenbach; dies entspricht einem Frachtenverhältnis von 18:3:1.

Für 1993 wurden die maximalen Frachten im Dezember mit 2.687 g/s in der Aa (AaS), 333 g/s im Meckelbach (MB) und 72 g/s im Gievenbach (GB) berechnet. Die niedrigsten Mengen liegen bei 3 g/s für den Gievenbach (GB, August ’93), 11 g/s für den Meckelbach (MB, Juni ’93) und 38 g/s für die Aa (AaS, Juni ’93).

Das Calcium

Auf der Kationenseite macht hinsichtlich der Gesamtfracht das Calcium (Abb. 80) einen entscheidenden Anteil aus. 1993 wurden für die Aa (AaS) 108 g/s, für den Meckelbach 14 g/s und für den Gievenbach 6 g/s Calcium ermittelt. Demnach macht der Calciumanteil bei der Aa 24,7 %, beim Gievenbach 24,0 % und beim Meckelbach 20,0 % der Gesamtfracht aus.

Die Amplituden reichen von 0 bis 17 g/s beim Gievenbach (GB), von 1 bis 75 g/s beim Meckelbach (MB) und von 7 bis 682 g/s bei der Aa (AaS).
Abb. 79: (Gesamt-)Fracht der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis Juni 1994 [g/s].

Abb. 80: Calciumfracht der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis Juni 1994 [g/s Ca].

Abb. 81: Hydrogencarbonatfracht der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis Juni 1994 [g/s HCO₃].
Das Hydrogencarbonat (Abb. 81)

Bei den Anionen spielt das Hydrogencarbonat die gewichtigste Rolle. Im Mittel liegen die Hydrogencarbonatfrachten 1993 für die Aa bei 234 g/s, für den Meckelbach bei 30 g/s und für den Gievenbach bei 12 g/s. Dies entspricht bei der Aa 53,5 %, beim Meckelbach 42,9 % und beim Gievenbach 48,0 % der Gesamtfracht.

Auch beim Hydrogencarbonat traten die Spitzenfrachten für 1993 im Dezember auf. Sie wurden mit 1498 g/s bei der Aa (AaS), 149 g/s beim Meckelbach (MB) und 37 g/s beim Gievenbach (GB) registriert. Die geringsten Frachten der Aa liegen bei 19 g/s (AaS, Juni '93), die des Meckelbachs (MB, Juni '93) bei 3 g/s und die des Gievenbachs bei 1 g/s (GB, August '93).

Das Nitrat und der anorganische Gesamtstickstoff

Der anorganische Gesamtstickstoff (Abb. 82) setzt sich summarisch aus den Stickstofffrachten von Nitrat (Abb. 83), Nitrit und Ammonium (Abb. 85) zusammen. Er dient der Verdeutlichung der Frachtrelationen zwischen den genannten Komponenten. Dabei nimmt das Nitrat die dominierende Stellung ein.

Im Schnitt wurden 1993 an anorganischem Gesamtstickstoff für den Gievenbach 415 mg/s, für den Meckelbach 1.913 mg/s und für die Aa 9.852 mg/s berechnet. Die entsprechenden Nitratstickstofffrachten liegen bei 305 mg/s N (GB), 1.327 mg/s N (MB) und 6.952 mg/s N (AaS).

Dies entspricht folgenden Nitratstickstoffanteilen am Gesamtaufkommen des anorganischen Stickstoffs: Gievenbach 73,5 %, Meckelbach 69,4 % und Aa 70,6 %. Das bedeutet: Mindestens zwei Drittel des anorganischen Stickstoffs der Fließgewässer werden als Nitrat in den Aasee eingetragen.

Der Vergleich der Fließgewässer zeigt, dass die Hauptmenge der anorganischen Stickstoffverbindungen mit 81,0 % aus der Aa (AaS) stammt. Meckelbach (MB) und Gievenbach (GB) sind mit jeweils 15,5 bzw. 3,6 % beteiligt. Die Verteilung des Nitrats entspricht der des anorganischen Gesamtstickstoffs: AaS 81,6 %, MB 15,8 % und GB 2,6 %.

Bezogen auf die Gesamtfracht lassen sich die Anteile der Stickstoffverbindungen sehr gut anhand des Nitrats veranschaulichen (Abb. 84). Im Mittel liegen die Nitratfrachten 1993 für die Aa (AaS) bei 31, für den Meckelbach (MB) bei 6 und für den Gievenbach (GB) bei 1 g/s NO₃⁻. Gemessen an den jeweiligen Gesamtfrachten der einzelnen Fließgewässer (s. o.) entspricht dies Anteilen von jeweils 7,1 % bei der Aa, 8,6 % beim Meckelbach und 4,0 % beim Gievenbach.

Das Ammonium

Die Ammoniumstickstofffrachten (Abb. 85) machen 1993 bei der Aa (AaS) 239, beim Meckelbach (MB) 136 und beim Gievenbach (GB) 18 mg/s N aus. Es stammen also 60,8 % der Ammoniumfracht der Fließgewässer aus der Aa, 34,6 % aus dem Meckelbach und 4,6 % aus dem Gievenbach.

Die Frachtenspanne des Ammoniums reicht 1993 für die Aa (AaS) von 1.306 bis 5 mg/s N, für den Meckelbach (MB) von 524 bis 2 mg/s N und für den Gievenbach von 64 bis 1 mg/s N.

Das ortho-Phosphat (SRP = lösliches reaktives Phosphat)

1993 sind die durchschnittlichen ortho-Phosphat-Frachten der Aa (AaS) bei 166 mg/s P, die des Meckelbachs bei 26 mg/s P und die des Gievenbachs bei 5 mg/s P angesiedelt.

Abb. 83: Nitratstickstofffracht der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis Juni 1994 [mg/s N].

Abb. 84: Nitratfracht der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis Juni 1994 [g/s NO₃].
(Abb. 86). Damit kommen 84,3 % aus der Aa (AaS), 13,2 % aus dem Meckelbach und 2,5 % aus dem Gievenbach.

Die Jahresamplituden für 1993 reichen bei der Aa (AaS) von 13 bis 1.290 mg/s P, beim Meckelbach von 2 bis 166 mg/s P und beim Gievenbach von 0 bis 29 mg/s P.

Das Gesamtphosphat (TP = Gesamtphosphor)

Die Frachtmittelwerte für das Gesamtphosphat (Abb. 87) belaufen sich 1993 auf 236 mg/s P für die Aa (AaS), 44 mg/s P für den Meckelbach (MB) und 7 mg/s P für den Gievenbach (GB). Es stammen also 82,2 % aus der Aa, 15,3 % aus dem Meckelbach und 2,4 % aus dem Gievenbach. Damit ist die prozentuale Frachtverteilung des Gesamtphosphates fast deckungsgleich mit der des ortho-Phosphats (s. o.). Die maximalen Gesamtphosphatfrachten erreichten 1993 Werte von 1.326 mg/s P (AaS), 189 mg/s P (MB) und 24 mg/s P (GB). Die geringsten Frachten lagen entsprechend bei 62, 5 und 1 mg/s P.

Das Borat

Borat (Abb. 88) wurde 1993 mit durchschnittlich 18 mg/s B in der Aa (AaS), 9 mg/s B im Meckelbach (MB) und 1 mg/s B im Gievenbach ermittelt. 64,3 % der Boratfracht werden demnach über die Aa, 32,1 % über den Meckelbach und 3,6 % über den Gievenbach eingetragen.

Zusammenfassend bleibt festzustellen, daß die Frachten der Fließgewässer entscheidend durch die Abflußmengen beeinflußt werden. Dementsprechend wird der größte Anteil über die Aa, und der kleinere Anteil über den Meckelbach und den Gievenbach eingetragen. Dennoch sind bei den verschiedenen Parametern zwei Frachtgruppen erkennbar:

1. Gesamtfracht, anorganischer Gesamtstickstoff, ortho- und Gesamtphosphat und Nitrat;

4.2.4 Bilanzierung (Ionen-Input)

Für den gesamten Untersuchungszeitraum von Dezember 1992 bis Juni 1994 wurden mit mehr als 74 Mio. m³ Wasser gut 34.000 t gelöste Ionensubstanzen über die drei Fließgewässer Aa, Meckelbach und Gievenbach in den Aasee transportiert (vgl. Tab. 8). Bezogen

Abb. 87: Gesamtphosphorfracht (TP = total phosphorus) der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis Juni 1994 [mg/s P].
Abb. 88: Boratfracht der drei in den Münsterschen Aasee einmündenden Fließgewässer im Zeitraum Dezember 1992 bis Juni 1994 [mg/s B].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ges.-Volumen</td>
<td>[cbm] [%]</td>
<td>[cbm] [%]</td>
</tr>
<tr>
<td>AaS</td>
<td>60.900.306 [82,0]</td>
<td>32.738.836 [78,4]</td>
</tr>
<tr>
<td>AaS+MB+GB</td>
<td>74.224.213 [100,0]</td>
<td>41.774.951 [100,0]</td>
</tr>
<tr>
<td>Ges.-Masse</td>
<td>[t] [%]</td>
<td>[t] [%]</td>
</tr>
<tr>
<td>AaS</td>
<td>28.326 [83,3]</td>
<td>15.265 [82,6]</td>
</tr>
<tr>
<td>MB</td>
<td>4.201 [12,4]</td>
<td>2.428 [13,1]</td>
</tr>
<tr>
<td>GB</td>
<td>1.476 [4,3]</td>
<td>796 [4,3]</td>
</tr>
<tr>
<td>AaS+MB+GB</td>
<td>34.003 [100,0]</td>
<td>18.489 [100,0]</td>
</tr>
<tr>
<td>Nitrat</td>
<td>[t N] [t NO₃] [%]</td>
<td>[t N] [t NO₃] [%]</td>
</tr>
<tr>
<td>AaS</td>
<td>539 [32,8] [83,5]</td>
<td>301 [21,6] [81,7]</td>
</tr>
<tr>
<td>MB</td>
<td>83 [366,6] [12,8]</td>
<td>55 [244] [14,9]</td>
</tr>
<tr>
<td>GB</td>
<td>22 [96,6] [3,4]</td>
<td>12 [55] [3,4]</td>
</tr>
<tr>
<td>AaS+MB+GB</td>
<td>643 [2.850,0] [100,0]</td>
<td>369 [1.633] [100,0]</td>
</tr>
<tr>
<td>Ges.-N (anorg.)</td>
<td>[t N] [%]</td>
<td>[t N] [%]</td>
</tr>
<tr>
<td>AaS</td>
<td>554 [82,8]</td>
<td>311 [80,9]</td>
</tr>
<tr>
<td>MB</td>
<td>92 [13,8]</td>
<td>60 [15,7]</td>
</tr>
<tr>
<td>AaS+MB+GB</td>
<td>668 [100,0]</td>
<td>384 [100,0]</td>
</tr>
<tr>
<td>ortho-Phosphat</td>
<td>[t P] [t PO₄] [%]</td>
<td>[t P] [t PO₄] [%]</td>
</tr>
<tr>
<td>AaS</td>
<td>10,7 [32,8] [83,5]</td>
<td>7,0 [21,6] [83,1]</td>
</tr>
<tr>
<td>MB</td>
<td>1,7 [5,4] [13,6]</td>
<td>1,2 [3,7] [14,2]</td>
</tr>
<tr>
<td>GB</td>
<td>0,4 [1,1] [2,9]</td>
<td>0,2 [0,7] [2,8]</td>
</tr>
<tr>
<td>AaS+MB+GB</td>
<td>12,8 [39,3] [100,0]</td>
<td>8,5 [26,0] [100,0]</td>
</tr>
<tr>
<td>Ges.-Phosphat</td>
<td>[t P] [t PO₄] [%]</td>
<td>[t P] [t PO₄] [%]</td>
</tr>
<tr>
<td>AaS</td>
<td>12,8 [39,4] [85,2]</td>
<td>7,4 [22,8] [82,4]</td>
</tr>
<tr>
<td>MB</td>
<td>1,9 [5,7] [12,4]</td>
<td>1,4 [4,2] [15,3]</td>
</tr>
<tr>
<td>GB</td>
<td>0,4 [1,1] [2,4]</td>
<td>0,2 [0,6] [2,3]</td>
</tr>
<tr>
<td>AaS+MB+GB</td>
<td>15,1 [46,2] [100,0]</td>
<td>9,0 [27,6] [100,0]</td>
</tr>
</tbody>
</table>
auf das Jahr 1993 waren dies knapp 18.500 t Gesamt-Masse. Davon entstammen 82,6% aus der Aa, 13,1% aus dem Meckelbach und 4,3% aus dem Gievenbach. Mit 1.633 t entfallen hiervon 8,8% allein auf den Pflanzenährstoff Nitrat (NO₃). Das in natürlichen Gewässern als limitierender Faktor fungierende Phosphat wurde 1993 mit insgesamt 27,6 t (Gesamt-PO₄³⁻) in den Aasee eingetragen. Der jeweils größte Anteil der Pflanzenährstoffe entstammt hierbei aus der Aa und macht beim anorganischen Gesamt-Stickstoff 80,9% und beim Gesamt-Phosphor 82,4% aus, während auf den Meckelbach 14,9% (anorg. Ges.-N) bzw. 15,3% (Ges.-P) entfallen. Der Gievenbach spielte mit Anteilen von 2,3% (Ges.-P) bzw. 3,4% (anorg. Ges.-N) eine untergeordnete Rolle.

4.2.5 Makrozoobenthon

Insgesamt wurden 188 Taxa aus 6 Stämmen, 10 Klassen und 24 Ordnungen registriert (Tab. 9). Die drei größten taxonomischen Einheiten sind die Insektenordnungen der Coleoptera und der Trichoptera sowie die Klasse der Gastropoda. Zusammen machen die Coleoptera mit 39 (20,7%), die Trichoptera mit 29 (15,4%) und die Gastropoda mit 27 Taxa (14,4%) gut die Hälfte des gesamten Artaufkommens aus (Abb. 89). Die andere Hälfte verteilt sich auf die Ordnungen Hydroidea (1 Taxon = 0,5%), Tricladida (9 Taxa = 4,8%), Oligochaeta (6 Taxa = 3,2%), Hirudinea (10 Taxa = 5,3%), Araneae (1 Taxon = 0,5%), Acari (1 Taxon = 0,5%), Ephemeroptera (11 Taxa = 5,9%), Plecoptera (1 Taxon = 0,5%), Odonata (7 Taxa = 3,7%), Megaloptera (1 Taxon = 0,5%), Heteroptera (14 Taxa = 7,4%) und Diptera (18 Taxa = 9,6%) sowie auf die Klassen Trematoda (1 Taxon = 0,5%), Crustacea (5 Taxa = 2,7%), Bivalvia (5 Taxa = 2,7%) und Pisces (2 Taxa = 1,1%).

Saprobiенindex (SI)

Auf der Basis der ermittelten Saprobiенindices ergibt sich ein relativ enger Güteklassenbereich, der ausschließlich die Güteklassen II und II-III beinhaltet (Abb. 90). Damit befanden sich die Fließgewässer aus saprobiologischer Sicht im mäßig (β-mesosaprobe Stufe) bis kritisch belasteten Gewässergütebereich (β- bis α-mesosaprobe Stufe).

Die ermittelten Durchschnittswerte der Saprobiенindices machen die Unterschiede an den einzelnen Standorten deutlich (Abb. 91).

Die Münstersche Aa befindet sich sowohl bei Aa ob. (Schonebeck) als auch bei Aa unt. (Haus Kump) mit einem durchschnittlichen SI von jeweils 2,29 und 2,28 gerade noch im β-mesosaprobem Bereich (G.-KL. II). Demgegenüber weist die sehr naturnah strukturierte Aa in Höhe von Havixbeck (Aa 1) einen SI von 1,89 auf, tendiert hier also noch zum oligo- bis β-mesosaprobem Bereich (G.-KL. I-II). Bereits in Höhe von Hohenholte (Aa 2) werden mit einem SI von 2,23 schon die gleichen Verhältnisse wie bei den weiter unterhalb liegenden Standorten Aa ob. und Aa unt. vorgefunden.

Der höchste durchschnittliche SI aller Standorte wurde beim Meckelbach etwas oberhalb der Ortslage Münster-Roxel (MB ob.) mit 2,54 (G.-KL. II-III) ermittelt, was einer kritischen Belastung entspricht. Im Bereich seiner Mündung in die Aa bei Haus Kump befindet sich der Meckelbach mit einem SI von 2,30 genau auf der Grenze zwischen der β-mesosaprobem (G.-KL. II) und der β-α-mesosaprobem Stufe (G.-KL. II-III).
<table>
<thead>
<tr>
<th>Taxon</th>
<th>Aa oberhalb</th>
<th>Aa unterhalb</th>
<th>Meckelbach oberhalb</th>
<th>Meckelbach unterhalb</th>
<th>Gievenbach oberhalb</th>
<th>Gievenbach unterhalb</th>
<th>Aa 1</th>
<th>Aa 2</th>
<th>Aa Einl</th>
<th>Ökologie</th>
<th>Rote Liste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroidea:</td>
<td></td>
</tr>
<tr>
<td>Hydra spec.</td>
<td></td>
</tr>
<tr>
<td>Tricladia:</td>
<td></td>
</tr>
<tr>
<td>Dendrocoelium lacteum</td>
<td></td>
</tr>
<tr>
<td>Dugesiella gonocephala</td>
<td></td>
</tr>
<tr>
<td>Dugesiella lugubris</td>
<td></td>
</tr>
<tr>
<td>Dugesiella polychroa</td>
<td></td>
</tr>
<tr>
<td>Dugesiella spp.</td>
<td></td>
</tr>
<tr>
<td>Dugesiella eigrina</td>
<td></td>
</tr>
<tr>
<td>Polycelis nigra</td>
<td></td>
</tr>
<tr>
<td>Polycelis (nigra'senmis) spec.</td>
<td></td>
</tr>
<tr>
<td>Polycelis tenuis</td>
<td></td>
</tr>
<tr>
<td>Trematoda:</td>
<td></td>
</tr>
<tr>
<td>Trichobilharzia sanguinula (L.)?</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta:</td>
<td></td>
</tr>
<tr>
<td>Eisenia fetidaea</td>
<td></td>
</tr>
<tr>
<td>Limnodrilus spp.</td>
<td></td>
</tr>
<tr>
<td>Lumbricus variegatus</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta non det.</td>
<td></td>
</tr>
<tr>
<td>Tubificidae non det.</td>
<td></td>
</tr>
<tr>
<td>Aelosomatidae:</td>
<td></td>
</tr>
<tr>
<td>Aelosoma spp.</td>
<td></td>
</tr>
<tr>
<td>Hirudinea:</td>
<td></td>
</tr>
<tr>
<td>Batracobdella verrucata</td>
<td></td>
</tr>
<tr>
<td>Erpobdella octoculata</td>
<td></td>
</tr>
<tr>
<td>Erpobdella testacea</td>
<td></td>
</tr>
<tr>
<td>Glossiphonion complanatum</td>
<td></td>
</tr>
<tr>
<td>Glossiphonion heterocelis</td>
<td></td>
</tr>
<tr>
<td>Haemopis sanguinula</td>
<td></td>
</tr>
<tr>
<td>Helodella stagnalis</td>
<td></td>
</tr>
<tr>
<td>Homoclepsis marginata</td>
<td></td>
</tr>
<tr>
<td>Piscicola geometra</td>
<td></td>
</tr>
<tr>
<td>Theromyzon tessolatum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Aa oberhalb</th>
<th>Aa unterhalb</th>
<th>Meckelbach oberhalb</th>
<th>Meckelbach unterhalb</th>
<th>Gievenbach oberhalb</th>
<th>Gievenbach unterhalb</th>
<th>Aa 1</th>
<th>Aa 2</th>
<th>Aa Einl</th>
<th>Ökologie</th>
<th>Rote Liste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decapoda:</td>
<td></td>
</tr>
<tr>
<td>Orconectes limosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gammaridae:</td>
<td></td>
</tr>
<tr>
<td>Gammarus fossarum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,4,7</td>
<td></td>
</tr>
<tr>
<td>Gammarus pulex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3,4,5,6</td>
<td></td>
</tr>
<tr>
<td>Isopoda:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,4,6,7,8</td>
<td></td>
</tr>
<tr>
<td>Anaspides aquaticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,4,6,7,8</td>
<td></td>
</tr>
<tr>
<td>Proasellus coxalis</td>
<td></td>
</tr>
<tr>
<td>Araneae:</td>
<td></td>
</tr>
<tr>
<td>Argyroneta aquatica</td>
<td></td>
</tr>
<tr>
<td>Acari:</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera:</td>
<td></td>
</tr>
<tr>
<td>[Baetis rhodani (L.)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>Baetis vernus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>Caenis horaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>Caenis lucida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Centropotum luteolum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4,5</td>
<td></td>
</tr>
<tr>
<td>Centropotum pennulatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cloeon dipterus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td>Ephemerella danica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>Haliotopus fusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>Paralectopterus submarginalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>Siphlonurus aestivalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Plecoptera:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4,5</td>
<td></td>
</tr>
<tr>
<td>Nemoura cinerea (L.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4,5</td>
<td></td>
</tr>
<tr>
<td>[Nemoura cinerea (L.)]</td>
<td></td>
</tr>
<tr>
<td>Odonata:</td>
<td></td>
</tr>
<tr>
<td>Aeshna cyanoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4,5,6,10</td>
<td></td>
</tr>
<tr>
<td>Calopteryx splendens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>Coenagrion puella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Enallagma cyathigerum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,10</td>
<td></td>
</tr>
<tr>
<td>Ischnura elegans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4,5,8,9</td>
<td></td>
</tr>
<tr>
<td>Platyplestis pennipes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4,5</td>
<td>3</td>
</tr>
<tr>
<td>Taxon</td>
<td>Aa oberhalb</td>
<td>Aa unterhalb</td>
<td>Meckelbach oberhalb</td>
<td>Meckelbach unterhalb</td>
<td>Gievenbach oberhalb</td>
<td>Gievenbach unterhalb</td>
<td>Aa 1</td>
<td>Aa 2</td>
<td>Aa Einl</td>
<td>Okologie</td>
<td>Rote Liste</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Odenata (Forts.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,4,5,10</td>
<td></td>
</tr>
<tr>
<td>Pyrrhosoma nymphula</td>
<td>***</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaloptera:</td>
<td></td>
</tr>
<tr>
<td>Sialis lutaria</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera:</td>
<td></td>
</tr>
<tr>
<td>Agabus bipustulatus</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Agabus dehnyus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Agabus melanocornis</td>
<td>***</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Agabus paludosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agabus spp. (L.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Anacaena bipustulata</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Anacaena globulus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Anacaena limbata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Dryops spp.</td>
<td></td>
</tr>
<tr>
<td>Dyttiscus spp. (L.)</td>
<td></td>
</tr>
<tr>
<td>Elmis aenea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3,4</td>
<td></td>
</tr>
<tr>
<td>Elmis spp. (L.)</td>
<td></td>
</tr>
<tr>
<td>Ilyrobus substriatus</td>
<td>**</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Haliphus fluviatilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>Haliphus fulvicollis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Haliphus heydeni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Haliphus laminatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Haliphus lineatocollis</td>
<td>***</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5,3</td>
<td></td>
</tr>
<tr>
<td>Haliphus spp. (L.)</td>
<td></td>
</tr>
<tr>
<td>Helodes spp. (L.)</td>
<td>***</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Helophorus aquaticus</td>
<td></td>
</tr>
<tr>
<td>Helophorus flavipes/obscurus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Hetetophorus grandis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Helophorus spec.</td>
<td></td>
</tr>
<tr>
<td>Hydrobius fascipes</td>
<td>***</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Hydrochorus spp.</td>
<td></td>
</tr>
<tr>
<td>Hydrocorisaeae (L.)</td>
<td></td>
</tr>
<tr>
<td>Ilyobius fuliginosus (f.)</td>
<td></td>
</tr>
<tr>
<td>Ilyobius fuliginosus (L.)</td>
<td></td>
</tr>
</tbody>
</table>
Coleoptera (Forts.):

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Aa oberhalb</th>
<th>Aa unterhalb</th>
<th>Meckelbach oberhalb</th>
<th>Meckelbach unterhalb</th>
<th>Gievenbach oberhalb</th>
<th>Gievenbach unterhalb</th>
<th>Aa 1</th>
<th>Aa 2</th>
<th>Aa Einl</th>
<th>Ökologie</th>
<th>Rote Liste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illybius spp. (L.)</td>
<td></td>
</tr>
<tr>
<td>Laccobius minutus</td>
<td></td>
</tr>
<tr>
<td>Laccophilus hyalinus</td>
<td></td>
</tr>
<tr>
<td>Laccophilus minutus</td>
<td></td>
</tr>
<tr>
<td>Limnus volckmari</td>
<td></td>
</tr>
<tr>
<td>Microcara testacea (L.)</td>
<td></td>
</tr>
<tr>
<td>Platambus maculatus (L.)</td>
<td></td>
</tr>
<tr>
<td>Platambus maculatus (L.)</td>
<td></td>
</tr>
<tr>
<td>Potamononetes depressus</td>
<td></td>
</tr>
<tr>
<td>Stictotarsus duodecimpustulatus</td>
<td></td>
</tr>
<tr>
<td>Heteroptera:</td>
<td></td>
</tr>
<tr>
<td>Corixidae non det. (L.)</td>
<td></td>
</tr>
<tr>
<td>Gerris lacustris</td>
<td></td>
</tr>
<tr>
<td>Hesperorcoris sahlbergi</td>
<td></td>
</tr>
<tr>
<td>Nepa cinerea</td>
<td></td>
</tr>
<tr>
<td>Notonecta glauca</td>
<td></td>
</tr>
<tr>
<td>Notonecta maculata</td>
<td></td>
</tr>
<tr>
<td>Ptea leachi</td>
<td></td>
</tr>
<tr>
<td>Sigara dorsalis</td>
<td></td>
</tr>
<tr>
<td>Sigara falleni</td>
<td></td>
</tr>
<tr>
<td>Sigara lateralis</td>
<td></td>
</tr>
<tr>
<td>Sigara spec.</td>
<td></td>
</tr>
<tr>
<td>Sigara striata</td>
<td></td>
</tr>
<tr>
<td>Velia caprai</td>
<td></td>
</tr>
<tr>
<td>Velia spp. (L.)</td>
<td></td>
</tr>
<tr>
<td>Diptera:</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae non det.</td>
<td></td>
</tr>
<tr>
<td>Chironominae non det.</td>
<td></td>
</tr>
<tr>
<td>Chironomini non det.</td>
<td></td>
</tr>
<tr>
<td>"Chironomus plumosus Gruppe"</td>
<td></td>
</tr>
<tr>
<td>"Chironomus thanum Gruppe"</td>
<td></td>
</tr>
<tr>
<td>Culicidae non det.</td>
<td></td>
</tr>
<tr>
<td>Dolichopeza albipes</td>
<td></td>
</tr>
<tr>
<td>Taxon</td>
<td>Aa Oberhalb</td>
<td>Aa Unterhalb</td>
<td>Meckelbach Oberhalb</td>
<td>Meckelbach Unterhalb</td>
<td>Gievenbach Oberhalb</td>
<td>Gievenbach Unterhalb</td>
<td>An 1</td>
<td>An 2</td>
<td>An Einl</td>
<td>Ökologie</td>
<td>Rote Liste</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Diptera (Forts.)</td>
<td></td>
</tr>
<tr>
<td>Limoniidae non det.</td>
<td></td>
</tr>
<tr>
<td>Orthocladiinae non det.</td>
<td></td>
</tr>
<tr>
<td>Prodiamesinae non det.</td>
<td></td>
</tr>
<tr>
<td>Simuliurn aureum-Larve (Artengr.)</td>
<td></td>
</tr>
<tr>
<td>Simuliurn aureum-Puppe (Artengr.)</td>
<td></td>
</tr>
<tr>
<td>Simuliurn spp.</td>
<td></td>
</tr>
<tr>
<td>Stratemyidae non det.</td>
<td></td>
</tr>
<tr>
<td>Tabanidae non det.</td>
<td></td>
</tr>
<tr>
<td>Trauypodinae non det.</td>
<td></td>
</tr>
<tr>
<td>Tanytarsini non det.</td>
<td></td>
</tr>
<tr>
<td>Tipula spp.</td>
<td></td>
</tr>
<tr>
<td>Trichoptera:</td>
<td></td>
</tr>
<tr>
<td>cruciforme Trichoptera:</td>
<td></td>
</tr>
<tr>
<td>Anabolia nervosa</td>
<td></td>
</tr>
<tr>
<td>Adripsodes aterrimum</td>
<td></td>
</tr>
<tr>
<td>Beraeodes minutus</td>
<td></td>
</tr>
<tr>
<td>Enoicyla pusilla</td>
<td></td>
</tr>
<tr>
<td>Glyphotaenia pellucidus</td>
<td></td>
</tr>
<tr>
<td>Goera pilosa</td>
<td></td>
</tr>
<tr>
<td>Halesus radiatus</td>
<td></td>
</tr>
<tr>
<td>Halesus spec.</td>
<td></td>
</tr>
<tr>
<td>Ironoqua dubia</td>
<td></td>
</tr>
<tr>
<td>Limnephilinae non det.</td>
<td></td>
</tr>
<tr>
<td>Limnephilus bipunctatus</td>
<td></td>
</tr>
<tr>
<td>Limnephilus extricatus</td>
<td></td>
</tr>
<tr>
<td>Limnephilus flavicornis</td>
<td></td>
</tr>
<tr>
<td>Limnephilus junatus</td>
<td></td>
</tr>
<tr>
<td>Limnephilus rhombicus</td>
<td></td>
</tr>
<tr>
<td>Lithax obscurus</td>
<td></td>
</tr>
<tr>
<td>Microptern (nycterobia?) spp.</td>
<td></td>
</tr>
<tr>
<td>Micropterna sequax</td>
<td></td>
</tr>
<tr>
<td>Micropterna/ Stenophylax spp.</td>
<td></td>
</tr>
<tr>
<td>Mystacides longicornis/nigra</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ökologie</th>
<th>5,15,18,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rote Liste</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa Oberhalb</td>
<td>3</td>
</tr>
<tr>
<td>Aa Unterhalb</td>
<td>15</td>
</tr>
<tr>
<td>Meckelbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Meckelbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An 1</td>
<td>5,18,15</td>
</tr>
<tr>
<td>An 2</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An Einl</td>
<td>2,3,18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ökologie</th>
<th>5,15,18,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rote Liste</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa Oberhalb</td>
<td>3</td>
</tr>
<tr>
<td>Aa Unterhalb</td>
<td>15</td>
</tr>
<tr>
<td>Meckelbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Meckelbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An 1</td>
<td>5,18,15</td>
</tr>
<tr>
<td>An 2</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An Einl</td>
<td>2,3,18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ökologie</th>
<th>5,15,18,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rote Liste</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa Oberhalb</td>
<td>3</td>
</tr>
<tr>
<td>Aa Unterhalb</td>
<td>15</td>
</tr>
<tr>
<td>Meckelbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Meckelbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An 1</td>
<td>5,18,15</td>
</tr>
<tr>
<td>An 2</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An Einl</td>
<td>2,3,18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ökologie</th>
<th>5,15,18,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rote Liste</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa Oberhalb</td>
<td>3</td>
</tr>
<tr>
<td>Aa Unterhalb</td>
<td>15</td>
</tr>
<tr>
<td>Meckelbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Meckelbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An 1</td>
<td>5,18,15</td>
</tr>
<tr>
<td>An 2</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An Einl</td>
<td>2,3,18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ökologie</th>
<th>5,15,18,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rote Liste</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa Oberhalb</td>
<td>3</td>
</tr>
<tr>
<td>Aa Unterhalb</td>
<td>15</td>
</tr>
<tr>
<td>Meckelbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Meckelbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An 1</td>
<td>5,18,15</td>
</tr>
<tr>
<td>An 2</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An Einl</td>
<td>2,3,18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ökologie</th>
<th>5,15,18,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rote Liste</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa Oberhalb</td>
<td>3</td>
</tr>
<tr>
<td>Aa Unterhalb</td>
<td>15</td>
</tr>
<tr>
<td>Meckelbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Meckelbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An 1</td>
<td>5,18,15</td>
</tr>
<tr>
<td>An 2</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An Einl</td>
<td>2,3,18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ökologie</th>
<th>5,15,18,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rote Liste</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa Oberhalb</td>
<td>3</td>
</tr>
<tr>
<td>Aa Unterhalb</td>
<td>15</td>
</tr>
<tr>
<td>Meckelbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Meckelbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Oberhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>Gievenbach Unterhalb</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An 1</td>
<td>5,18,15</td>
</tr>
<tr>
<td>An 2</td>
<td>3,4,5,8</td>
</tr>
<tr>
<td>An Einl</td>
<td>2,3,18</td>
</tr>
<tr>
<td>Taxon</td>
<td>Aa oberhalb</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Trichoptera (Forts.)</td>
<td></td>
</tr>
<tr>
<td>Mystacides nigra</td>
<td></td>
</tr>
<tr>
<td>Potamophylax rotundipennis</td>
<td></td>
</tr>
<tr>
<td>Setodes sp.</td>
<td></td>
</tr>
<tr>
<td>caputoside Trichoptera:</td>
<td></td>
</tr>
<tr>
<td>Cymus trimaculatus</td>
<td></td>
</tr>
<tr>
<td>Hydropsyche angustipennis</td>
<td></td>
</tr>
<tr>
<td>Hydropsyche cf saxonica</td>
<td></td>
</tr>
<tr>
<td>Hydropsyche silicalai</td>
<td></td>
</tr>
<tr>
<td>{Neurecipsis biculata}</td>
<td></td>
</tr>
<tr>
<td>Tinodes (maculicornis/assimilis?) spec.</td>
<td></td>
</tr>
<tr>
<td>Gastropoda:</td>
<td></td>
</tr>
<tr>
<td>Acroloxus lacustris</td>
<td></td>
</tr>
<tr>
<td>Ancylus fluviatilis</td>
<td></td>
</tr>
<tr>
<td>Anisus leucostoma</td>
<td></td>
</tr>
<tr>
<td>Anisus spirorbis</td>
<td></td>
</tr>
<tr>
<td>Anisus vortex</td>
<td>[.]</td>
</tr>
<tr>
<td>Aplexa hypnorum</td>
<td></td>
</tr>
<tr>
<td>Bathymonas contortus</td>
<td></td>
</tr>
<tr>
<td>Bathymias tentaculata</td>
<td></td>
</tr>
<tr>
<td>Carychium minimum</td>
<td></td>
</tr>
<tr>
<td>{Discus rotundatus}</td>
<td></td>
</tr>
<tr>
<td>Galba truncatula</td>
<td></td>
</tr>
<tr>
<td>Gyranthus albus</td>
<td>[.]</td>
</tr>
<tr>
<td>Lymnaea stagnalis</td>
<td></td>
</tr>
<tr>
<td>Physa fontinalis</td>
<td></td>
</tr>
<tr>
<td>Physa acuta</td>
<td></td>
</tr>
<tr>
<td>Planorbis corneus</td>
<td>[.]</td>
</tr>
<tr>
<td>Planorbis planorbis</td>
<td></td>
</tr>
<tr>
<td>Potamopyrgus antipodarum</td>
<td></td>
</tr>
<tr>
<td>Radix ovata</td>
<td></td>
</tr>
<tr>
<td>Segmentina nitida</td>
<td></td>
</tr>
<tr>
<td>Stagnicola glaber</td>
<td></td>
</tr>
<tr>
<td>Succinea pausi</td>
<td></td>
</tr>
<tr>
<td>Taxon</td>
<td>Aa oberhalb</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Gastropoda (Forts.)</td>
<td></td>
</tr>
<tr>
<td>(Succinea spp. (fav.)</td>
<td>[]</td>
</tr>
<tr>
<td>(Succineaidea non det.)</td>
<td>[]</td>
</tr>
<tr>
<td>Valvata crispata</td>
<td>[]</td>
</tr>
<tr>
<td>Valvata piscinalis</td>
<td>[]</td>
</tr>
<tr>
<td>Viviparus viviparvs</td>
<td>[]</td>
</tr>
<tr>
<td>Bivalvia</td>
<td></td>
</tr>
<tr>
<td>Anodonta spec.</td>
<td>[]</td>
</tr>
<tr>
<td>Sphaerium corneum</td>
<td>[]</td>
</tr>
<tr>
<td>Sphaerium spec.</td>
<td>[]</td>
</tr>
<tr>
<td>Pisidium spp.</td>
<td>[]</td>
</tr>
<tr>
<td>Valvata cristata</td>
<td>[]</td>
</tr>
<tr>
<td>Valvata piscinalis</td>
<td>[]</td>
</tr>
<tr>
<td>Viviparus viviparvs</td>
<td>[]</td>
</tr>
<tr>
<td>Abundanz Saprobientaxa</td>
<td>1,25 2,46 2,22 2,25 2,30 2,33 2,18 2,33 2,36 2,27 2,29 2,32 2,34 2,45 2,26 2,14 2,25 2,15 1,89 2,23 2,30</td>
</tr>
<tr>
<td>Streuung</td>
<td>0,12 0,10 0,08 0,07 0,07 0,06 0,10 0,11 0,08 0,09 0,09 0,07 0,10 0,10 0,09 0,07 0,08 0,07 0,11</td>
</tr>
<tr>
<td>Saprobiensindex (SI)</td>
<td></td>
</tr>
<tr>
<td>Anzahl Saprobientaxa</td>
<td>8 19 15 15 21 21 12 13 15 12 12 5 14 14 13 9 11 11 10 6</td>
</tr>
<tr>
<td>Anzahl aller Taxa</td>
<td>32 45 47 26 51 36 29 27 41 33 37 19 39 33 35 20 26 28 29 14</td>
</tr>
<tr>
<td>Abundanz Saprobientaxa</td>
<td>16 39 29 35 46 42 29 30 33 31 20 16 31 36 28 28 28 31 23 19</td>
</tr>
<tr>
<td>Abundanz aller Taxa</td>
<td>64 93 93 52 104 73 60 53 94 72 80 49 84 78 70 47 59 63 66 33 50 58 55 41 58 43 22</td>
</tr>
</tbody>
</table>

Angaben zur Ökologie (nach Limnofauna Europaea, ILLIES 1978):

0 = Süßwasser allgemein, keine Spezialisierung
1 = Grundwasser, Höhlen und Pannmon
2 = Quellen (Krenen)
3 = Bäche und kleine Flüsse (Rhiithron)
4 = Flüsse und große Ströme (Potamon)
5 = Seen (stehende Gewässer allgemein)
6 = Temporäre Kleingewässer, Pfützen, Teiche
7 = Pflanzengewässer (Phytotelmen)
8 = Brackwasser, Ästuar
9 = binnenländische Salzgewässer (Salinen etc.)
10 = Moore

Abundanklassen nach DIN:

vereinzelt (1)
wenig (2)
wenig - mittel (3)
mittel (4)
mittel - viel (5)
viel (6)
massenhaft (7)

Schalen- u. Köcherfund,
Imaginalstadien von reinen Larvalproben
renen (L.)
Imagines (1)

RL = Gefährdungskategorien der Roten Liste NRW (LÖLF, 1996)
Trichoptera
Summe aller Taxa = 188

Heteroptera
Oligochaeta (6)

Ephemeroptera
"andere": Hydroidea, Trematoda,
Araneae, Acari, Plecoptera, Megaloptera

Probestelle & Datum G.-Kl. I–II G.-Kl. II G.-Kl. II–III G.-Kl. III

Aa 1 Okt. '94
Aa 2 Okt. '94
Aa Einl. Okt. '94
Aa (ob.) Mai '93
 Okt. '93
 Apr. '94
 Okt. '94
Aa (unt.) Apr. '93
 Okt. '93
 Apr. '94
 Okt. '94
Mb. (ob.) Mai '93
 Nov. '93
 Apr. '94
 Okt. '94
Mb. (unt.) Apr. '93
 Okt. '93
 Apr. '94
 Okt. '94
Gb. (ob.) Mai '93
 Okt. '93
 Apr. '94
 Okt. '94
Gb. (unt.) Apr. '93
 Okt. '93
 Apr. '94
 Okt. '94

Der durchschnittliche SI des G i e v e n b a c h s in Höhe des Stadtteils Gievenbeck (GB ob.) liegt mit 2,35 im β-α-mesosaprobten Bereich (G.-Kl. II-III). Dagegen beträgt er weiter unterhalb (GB unt.) - oberhalb des Allwetterzoos - nur noch 2,21, was der β-mesosaprobten Stufe (G.-Kl. II) entspricht.

Meckelbach und Gievenbach ist gemeinsam, daß wider Erwarten die oberhalb liegenden Standorte (MB ob. bzw. GB ob.) deutlich höhere Saprobienindices aufweisen, als die weiter unterhalb liegenden (MB unt. bzw. GB unt.).

Artendiversität und Artenfehlbetrag

Für die Standorte Aa unt., MB unt. und GB unt., sowie die Standorte Aa 2 und Aa ob. - bei den beiden zuletzt genannten Stellen konnte nur auf die Bestandsaufnahmen vom Herbst 1994 Bezug genommen werden - wurden die Artenfehlbeträge nach Kothe (1962) errechnet (Tab. 10). Vor allem die Artenfehlbetragsberechnungen für den gesamten Untersuchungszeitraum von 1993 bis 1994 zeigen einerseits eine Abnahme des Artenspektrums in der Münster-

<table>
<thead>
<tr>
<th>Probestelle</th>
<th>Frühj. '93</th>
<th>Herbst '93</th>
<th>Frühj. '94</th>
<th>Herbst '94</th>
<th>1993/94</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8,0</td>
<td>-</td>
</tr>
<tr>
<td>Aa ob.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-13,0</td>
<td>-</td>
</tr>
<tr>
<td>Aa unt.</td>
<td>-59,4</td>
<td>20,0</td>
<td>38,3</td>
<td>-3,8</td>
<td>7,7</td>
</tr>
<tr>
<td>MB unt.</td>
<td>4,9</td>
<td>0,0</td>
<td>5,4</td>
<td>-5,3</td>
<td>-15,0</td>
</tr>
<tr>
<td>GB unt.</td>
<td>11,5</td>
<td>10,7</td>
<td>6,9</td>
<td>-42,9</td>
<td>2,0</td>
</tr>
</tbody>
</table>

sehen Aa um 7,7 % und dem Gievenbach um 2,0 %, andererseits eine Zunahme beim Meckelbach (- 15,0 %). Obwohl damit noch nichts über die Qualität der Artenzusammensetzung ausgesagt ist, wird zumindest für den Meckelbach eine Parallele in Hinblick auf den Saprobienindex sichtbar, der dort von oberhalb (MB ob.) nach unterhalb (MB unt.) sank.
Die zum Teil erheblichen Schwankungen der auf die Einzelbestandsaufnahmen bezogenen Artenfehlbeträge sind u. a. auf Witterungsverhältnisse, insbesondere Hochwassererignisse zurückzuführen.

Wenn auch aus saprobiologischer Sicht die Unterschiede zwischen den verschiedenen Fließgewässern nicht so eklant ausfallen wie bei den hydrochemischen und hydropysikalischen Ergebnissen, so stimmen sie tendenziell doch überein.

Der qualitativ beste Standort Aa 1 könnte als Leitbild fungieren.

5. Diskussion

Gewässertypologie Aasee

1. Der Aasee ist kein natürliches, sondern ein anthropogenes Gewässer.
2. Er mißt an den tiefsten Stellen maximal zwei Meter und ist damit sehr flach.
3. Ihm fehlt der gesamte Lebensraum des zonierten Litorals sowie dessen Biozönose.
4. Er ist kein isoliertes „Stillgewässer“, sondern als Teilkomponente des Fließgewässereinzugsgebietes der Münsterschen Aa anzusehen. Letztere durchfließt ihn im Hauptschluß in seiner gesamten Länge.
5. Er entspricht einem Mischtypus, denn in Abhängigkeit von der jeweiligen Niederschlagsituotion und bedingt durch den Rückstau und die Aufweitung der Münsterschen Aa weist er sowohl die Eigenschaften eines Fließgewässers als auch den Charakter eines ungeschichteten Flachsees auf.
7. Der Aasee wird auf verschiedene Weisen genutzt. Seine technische Funktion als großes Regenrückhaltebecken und seine soziale Funktion als größte Naherholungsstätte für Münsters Bevölkerung stellen hierbei die wichtigsten Nutzungsformen dar.

Dem Typensystem für Flachgewässer nach Weimann (1942/43) folgend, entspricht der Münstersche Aasee am ehesten dem polytrophen *Aphanizomenon*- und *Scenedesmus*-Typ.
Da der Aasee in seiner ganzen Länge von der Aa durchflossen wird, besitzt er auch die Eigenschaften eines Fließgewässers, genauer eines rückgestauten Fließgewässers (vgl. Klapper 1992). Die Bezeichnung Aa-"See" ist also falsch und irreführend.

Trophie

Nach den hier vorgelegten Untersuchungsergebnissen ist der Aasee in der fünfstufigen, von ultra-oligotroph bis hypertroph reichenden Trophieskala (vgl. Vollenweider & Kerekés 1982), in die Klasse 5, also hypertroph, einzuordnen (s. Abb. 93 u. 94). Das heißt der Aasee ist als übermäßig nährstoffreiches und dementsprechend hochproduktives Gewässer anzusehen. Hierfür sind neben vielen anderen Fakten folgende Sachverhalte ausschlaggebend:

3. Die durchschnittlichen Sichttiefe ist mit 0,6 m (1993) äußerst gering (vgl. Abb. 94; SecchiMax = 1,2 m; SecchiMin = 0,3 m).
4. Es treten regelmäßig Wasserblüten von Blaulgen (Cyanophyceae) auf.

Die Hypertrophie des Münsterschen Aasees ist Folge des permanent extremen Belastungspotentials, dem er ausgesetzt ist.

Die nun folgende Analyse der ökologisch bedenklichen Situation, in der sich der Aasee befindet, besteht aus zwei Schritten. Im ersten wird dem für die Hypertrophierung des Aasees hauptsächlich verantwortlichen Faktorenkomplex Nährstoffe auf den Grund gegangen. Die Stickstoff- und die Phosphorproblematik stehen hierbei im Vordergrund. Im zweiten Schritt ist auf die für den Aasee vor allem während des Sommerhalbjahres zu beobachtende typische Symptomatik einzugehen, welche sich besonders durch das stark alkalische Milieu, die prekäre Sauerstoffsituation, beträchtliche Wasserblüten und durch Vergiftungseffekte auszeichnet. Gleichzeitig soll der zwischen den beiden genannten Fak-

![Abb. 93: Wahrscheinlichkeitsverteilung der trophischen Lage von Stillgewässern in Abhängigkeit vom Phosphorgehalt sowie die spezielle trophische Lage des Münsterschen Aasees für das Jahr 1993 (nach Vollenweider & Kerekés 1982, verändert).](image-url)
Das Stickstoffproblem

Hinsichtlich der Herkunft der stickstoffhaltigen Nährstoffe, insbesondere des Nitrats, müssen vor allem die in den Aasee einmündenden Fließgewässer bzw. deren Einzugsgebiete genannt werden. Ein Blick auf die entsprechenden Fließwasserjahresgänge der Nitratkonzentrationen (vgl. Abb. 63) zeigt, daß ihre Dynamik sehr der Situation im Aasee gleich (vgl. Abb. 23). Besonders dominierend wirkt sich hierbei die Stickstoffentwicklung in der Aa aus. Von dort stammen mehr als 80 % der im Aasee gemessenen Nitratfracht (vgl. Tab. 8). Für das Jahr 1993 ergibt die Bilanz der anorganischen Stickstoffverbindungen einen Eintrag von 384 t N. Allein 369 t hiervon (96,1 %) entfielen auf den

Das Phosphatproblem

Der Phosphor hat innerhalb des Stoffwechselgeschehens neben anderen vor allem diese zwei Funktionen: Er ist Bestandteil der Nukleinsäuren, und er spielt eine entscheidende Rolle bei der Übertragung chemischer Energie. Für die Pflanzen ist er essentiell und wird in Form des ortho-Phosphates aufgenommen. Unter natürlichen Bedingungen wirkt Phosphor in aquatischen Systemen als limitierender Nährstoff. Er übt damit die Schlüsselrolle für die Intensität der Bioproduktion aus, was die besondere Stellung des Phosphates als Eutrophierungsfaktor erklärt.

Im natürlichen See klassischer Ausprägung sind ähnlich wie beim Stickstoff auch hier zu Beginn der Vegetationsphase als Folge der Mineralisierung große Mengen an frei verfügbarem ortho-Phosphat vorhanden (Startphosphor). Parallel zur Zunahme der Produktion von Biomasse im Frühjahr nehmen die ortho-Phosphat-Ressourcen ab, und es kommt zur Stagnation bzw. zum Zusammenbruch der einzelnen P-verwertenden Nahrungsgemeinschaften. Selbst wenn andere Nährstoffe wie z. B. das Nitrat noch in ausreichender Menge vorhanden sind, ist keine Steigerung mehr möglich.

Für die Herkunft der zusätzlichen Phosphatressourcen sind mehrere Erklärungen zu nennen:

1. Der Großteil des Phosphors wird genauso wie bei den Stickstoffverbindungen über die Fließgewässer importiert. Die Dynamik der entsprechenden Jahresganglinien des Aasees (vgl. Abb. 27 u. 28) und der Fließgewässer (vgl. Abb. 67 u. 68) verlaufen nahezu parallel. Die entsprechende Bilanz für Gesamtphosphor weist 1993 einen über die Fließgewässer erfolgenden Eintrag von 9,0 t P auf (= 27,6 t PO₄³⁻; vgl. Tab. 8). Hiervon stammen 7,4 t P aus der Münsterschen Aa, was einem Anteil von 82,4 % entspricht. Insgesamt wurden von Dezember 1992 bis Juni 1994 15,1 t Phosphor (= 46,2 t PO₄³⁻) über die Fließgewässer in den Aasee eingetragen. Auf das Jahr 1993 bezogen ergibt sich somit für das 103,33 km² große Einzugsgebiet eine Phosphoremission von 0,87 kg/ha P bzw. von 4,0 kg/ha P₂O₅. Im Gegensatz zum Stickstoff ergab die Studie des EFEU EUREGIO INSTITUTS (1995) für das Gebiet des Kreises Coesfeld, auf dem sich das obere Aa-Einzugsgebiet befindet, keinen zusätzlichen Nährstoffbedarf an Phosphor. Vielmehr besteht hier ein Nährstoffüberschuß von 3,8 kg P₂O₅ pro Hektar und Jahr. Dieser Betrag ist mit 95,0 % nahezu identisch mit dem Betrag der o. a. Phosphoremission von 4,0 kg/ha P₂O₅. Im Gegensatz zum Stickstoff, besonders des Nitrates, wird das Phosphat auf Grund seiner hohen adsorptiven Eigenschaften vergleichsweise langsamer und damit zunächst in erheblich geringerem Maße ausgewaschen; dieser Vorgang geht jedoch langfristig und fortwährend vorstatten. Auf Grund der in den Böden adsorptiv gespeicherten Phosphatressourcen ist deshalb auch künftig mit einem entsprechend kontinuierlichen Auswaschungseffekt aus den landwirtschaftlichen Flächen zu rechnen – selbst dann, wenn die Düngung mit Phosphaten ganz eingestellt würde. Darüber hinaus entstammt das Phosphat einer Reihe weiterer Emissionsquellen, so daß der Phosphoreintrag über die Fließgewässer wohl nicht ausschließlich der landwirtschaftlichen Nutzung zugerechnet werden darf.

2. Das Potential an remobilisierbarem Phosphor im Aaseesediment zeigt, daß auch diese P-Quelle eine Rolle spielt, die nicht unterschätzt werden darf, selbst dann nicht, wenn eine zufriedenstellende Sauerstoffsituation vorgefunden wird (vgl. Kap. 4.1.5 u. RIPL 1982). Wenigstens phasenweise könnte die durch Rücklösung verursachte Phosphordüngung sogar höher sein als der durch den allochthonen Eintrag bedingte Effekt (Mothes 1987).

Die Folgen für die Bioproduktion durch das Überangebot des essentiellen Nährstoffes Phosphat entsprechen den bereits aufgezeigten im Zusammenhang mit den anorganischen Stickstoffverbindungen, besonders in Hinblick auf das Nitrat. Das unbegrenzte Wachstum
läßt die Bioproduktion nicht zum Stillstand kommen, im Gegenteil, selbige wird immer wieder angekurbelt. Für den Nährstoffnachschub sorgen vor allem die Fließgewässer und die Sedimente.

Wenn nun der unter natürlichen Bedingungen limitierende Faktor Phosphat offenbar zu fast jedem Zeitpunkt im Überangebot verfügbar ist, ist dann auch die Produktion und damit das Wachstum der Lebensgemeinschaft tatsächlich unbegrenzt? Aufschluß hierüber gibt das Gewichtsverhältnis von Stickstoff zu Phosphor (vgl. Tab. 11).

<table>
<thead>
<tr>
<th>Münsterscher Aasee</th>
<th>Münstersche Aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[N:P]</td>
<td>[N:P]</td>
</tr>
<tr>
<td>10. Dez 92</td>
<td>47</td>
</tr>
<tr>
<td>20. Jan 93</td>
<td>25</td>
</tr>
<tr>
<td>17. Feb 93</td>
<td>38</td>
</tr>
<tr>
<td>17. Mrz 93</td>
<td>600</td>
</tr>
<tr>
<td>21. Apr 93</td>
<td>39</td>
</tr>
<tr>
<td>26. Mai 93</td>
<td>25</td>
</tr>
<tr>
<td>16. Jun 93</td>
<td>7</td>
</tr>
<tr>
<td>14. Jul 93</td>
<td>4</td>
</tr>
<tr>
<td>11. Aug 93</td>
<td>5</td>
</tr>
<tr>
<td>15. Sep 93</td>
<td>3</td>
</tr>
<tr>
<td>20. Okt 93</td>
<td>56</td>
</tr>
<tr>
<td>10. Nov 93</td>
<td>39</td>
</tr>
<tr>
<td>08. Dez 93</td>
<td>46</td>
</tr>
<tr>
<td>19. Jan 94</td>
<td>51</td>
</tr>
<tr>
<td>09. Feb 94</td>
<td>56</td>
</tr>
<tr>
<td>09. Mrz 94</td>
<td>46</td>
</tr>
<tr>
<td>13. Apr 94</td>
<td>67</td>
</tr>
<tr>
<td>11. Mai 94</td>
<td>58</td>
</tr>
<tr>
<td>08. Jun 94</td>
<td>62</td>
</tr>
<tr>
<td>06. Jul 94</td>
<td>1</td>
</tr>
<tr>
<td>17. Aug 94</td>
<td>0</td>
</tr>
<tr>
<td>14. Sep 94</td>
<td>3</td>
</tr>
</tbody>
</table>

D i e A l k a l i t ä t a l s S y m p t o m d e r N ä h r s t o f f b e l a s t u n g

Als Folge des produktionsbedingten Protonenentzuges erreichte der pH-Wert Größenordnungen von bis zu pH 9,4 (SCH 10.08.94) ein Niveau, welches für Fische wie den Barsch (*Perca fluviatilis*) oder den Kaulbarsch (*Gymnocephalus cernua*) tödlich ist (KLEE 1991); ein latentes und zeitweise massives Fischsterben im Aasee und der Aamündung waren in beiden Untersuchungsjahren immer wieder feststellbar.

Mit dem auf diese Weise allmählich ansteigendem pH-Niveau kommen nach und nach andere Probleme wie die Bildung größerer Konzentrationen von Ammoniak hinzu, auf deren Auswirkungen später noch eingegangen wird.

D a s S a u e r s t o f f s y m p t o m

Die unbegrenzte Primärproduktion des Phytoplanktons spiegelt sich auch direkt im Sauerstoffhaushalt des Aasees wider. So konnten in der obersten Wasserschicht (0,0 - 0,5 m) tagsüber Sauerstoffsättigungswerte von maximal 275 % (= 29,1 mg/l O₂; 11.05.94) erreicht werden, wenngleich an derselben Stelle (ASN) zum selben Zeitpunkt in 1,5 Meter Tiefe bereits nur noch 120 % Sättigung (= 11,5 mg/l O₂) meßbar waren. Diese extreme Sauerstoffübersättigung ist jedoch nicht nur Folge der hohen Nettoprimärproduktion, sondern gleichzeitig auch Indiz für eine entsprechend hohe Atmungsrate, deren ganzes Ausmaß erst nachts bzw. in den frühen Morgenstunden sichtbar wird. Die Meßserie zur Tagesgangdynamik des Aasees vom 30./31.07.92 macht die Diskrepanz deutlich (vgl. 100
Abb. 39 u. 40): Dort wurde am Abend des 30.07.92 mit einem maximalen Sättigungswert von 234 % (= 20,0 mg/l O₂) ganz ähnliche Verhältnisse vorgefunden wie am 11.05.94. In den frühen Morgenstunden (4.30 Uhr MESZ) des darauf folgenden Tages lag die Sauerstoffsättigung in Nähe des Gewässergrundes (1,8 m) jedoch nur noch bei 75 % (= 6,6 mg/l O₂). Im Extremfall ist davon auszugehen, daß zumindest stellenweise Sauerstoffarmut auftritt. Das muß nicht allein nachts oder in den frühen Morgenstunden der Fall sein, denn zu bestimmten Zeiten wurden auch tagsüber stark untersättigte Verhältnisse angetroffen, wie die Ergebnisse vom 06. Juli 1994 klar belegen: Dort wurden um 10.10 Uhr MESZ am Standort ASN in 1,7 m Tiefe mit 0,6 mg/l O₂ eine Sauerstoffsättigung von nur 7 % vorgefunden. Damit ist belegt, daß der Aasee im Sommerhalbjahr zeitweilig Sauerstoffdefizite aufweist. Hiermit nähert sich der Münstersche Aasee der Situation des „Umkippens“. Ein solches Umkippen stellt keine extreme Einzelerscheinung dar, sondern wäre eine entscheidende Schlüsselsituation für den Aasee. Selbst wenn diese extremen Verhältnisse nur für relativ kurze Zeit im Jahr auftraten, käme es zu katastrophalen und langfristigen Folgeerscheinungen. Faulnispersönne in einem zunehmend reduzierenden Milieu verstärken die desolate Situation sehr schnell, so daß alle atmenden Organismen abstürben. Die totale Verödung des Gewässers wäre die Folge. Generell ist dieses Stadium nicht umkehrbar! Für den Münsterschen Aasee ist als höchst bemerkenswertes Phänomen festzustellen, daß dieser zwar jährlich alle Anzeichen des „Umkippens“ aufweist, letzteres jedoch noch nicht als Endstadium in Erscheinung getreten ist. Warum dies so ist, wird am Schluß dieses Kapitels zu diskutieren sein.

Das Plankton des Aasees als Bioindikator für die syner gistischen Effekte der Nährstoffbelastung

Hieraus allein können jedoch noch keine Rückschlüsse auf den Anteil der zooplanktivor en Fische gezogen werden, denn auch die Raubfischarten durchlaufen Entwicklungsphasen mit zooplanktivorer Lebensweise. Vielmehr muß aufgrund der unterrepräsentierten großen Zooplankter (s. o.) davon ausgegangen werden, daß die zooplanktivor ten Prädato ren auch quantitativ gut vertreten sind.

Somit kann sich das Phytoplankton aufgrund der Nährstoffsituation im Aasee maximal vermehren, ohne daß sich durch den Fraß herbivorer Zooplankter (grazing) ein nennenswert gegenläufiger Effekt bemerkbar machen würde. Ein Klarwasserstadium konnte im Aasee jedenfalls zu keinem Zeitpunkt vorgefunden werden. Im Laufe einer Vegetationsphase dürfte dies auch um so unwahrscheinlicher werden, je größer der Anteil an schlecht ingestierbaren Blaualgen wird.

![Diagramm der Ichthyofauna-Artenverteilung des Münsterschen Aasees 1991](image)

Vergiftungseffekte

Im Gegensatz zu den vorgenannten allochthonen Schwermetallen sind die im Aasee zu beobachtenden autochthonen Vergiftungseffekte ausschließlich als Folgen der enormen Nährstoffbelastung anzusehen. So geht mit der sehr hohen Primärproduktion des Phytoplanktons ein entsprechender Protonenentzug einher, was den pH-Wert des Aasees bis auf pH 9,4 ansteigen ließ. Damit wurde zeitweise ein Niveau erreicht, welches für bestimmte Fischarten bereits tödlich ist. In jedem Fall kommt es z. B. zu Verätzungen der Kiemen oder zur Degeneration der äußeren Schleimhaut (vgl. HÜTTER 1992). Auch die Entwicklung von Eiern und Fischbrut leidet hierunter.

Neben den unmittelbaren Auswirkungen des alkalischen Milieus hat der erhöhte pH-Wert auch sekundäre Folgen fatalen Ausmaßes, besonders im Hinblick auf das Ammonium/Ammoniak-Verhältnis. Die pH- und temperaturabhängige NH₃-Bildung beginnt ab pH 7 und folgt einem sigmoiden Verlauf. Bei einem pH-Wert von 9,0 und einer Wassertemperatur von 17 °C befinden sich bereits 25 % des NH₄⁺/NH₃-Gleichgewichtes auf Seiten des Ammoniaks. Dieses ist extrem fischgiftig; ab 0,025 mg/l NH₃-N ist bei Fischen mit chronischen Schäden zu rechnen. Dementsprechend wurde für die EG-Richtlinie für Fischgewässer der Richtwert auf ≤ 0,004 und der Grenzwert auf 0,020 mg/l NH₃-N festgelegt (LWA 1991). Im Aasee wurden mittlere Konzentrationen von 0,005 bis 0,009 mg/l NH₃-N und Maximalkonzentrationen von bis zu 0,029 mg/l NH₃-N vorgefunden. Damit ist der Aasee als dauerhaft ammoniakgeschädigt anzusehen.

Neben der Ichthyofauna dürfte Ammoniak auch auf andere Organismen toxische Wirkung haben, da es generell als Zellgift wirkt. Davon sind u. a. auch die Bakterienarten der Gat-

103

Dies hat weitere Folgen in der Toxizitätstaskade, denn die Nitrifikation kann in dieser Situation nur noch teilweise ablaufen. Die für die Nitritation verantwortlichen Arten der Gattung Nitrosomonas oxidieren zwar das Ammonium zu Nitrit. Der normalerweise sich anschließende, durch Nitrobacter zu vollziehende Nitratationsschritt vom Nitrit zum Nitrat findet hingegen auf Grund der o. g. toxischen Wirkung von Ammonium bzw. Ammoniak nicht mehr oder nur in sehr reduziertem Maße statt. Dies ist die Situation, in der sich das ansonsten kaum vorhandene giftige Nitrit anreichern kann. Unbelastete Wässer weisen es höchstens in Spuren bis maximal 0,3 mg/l N auf (vgl. HöLL 1987), weshalb die EG-Richtlinie für Fischgewässer (LWA 1991) für Salmoniden-Gewässer einen Richtwert von < 0,003 mg/l NO₂⁻-N und für Cypriniden-Gewässer von < 0,009 mg/l NO₂⁻-N vorschreibt. Im Aasee wurden im gesamten Untersuchungszeitraum durchschnittliche Konzentrationen von 0,06 mg/l NO₂⁻-N und maximale Gehalte von bis zu 0,16 mg/l NO₂⁻-N gemessen. Der Aasee war also während des gesamten Untersuchungszeitraumes mit Nitrit vergiftet!

Der aufgezeigte Weg der Entstehung toxischer Konzentrationen von Nitrit über die vorgeschaltete Ammonium/Ammoniak-Vergiftung zeigt, daß die Wirkung verschiedener Toxine nicht nur als Summationseffekt angesehen werden darf. Vielmehr führt diese Art der kaskadenartigen Zusitzung zu einem sich potenzierenden Vergiftungseffekt. Tritt dann auch noch Sauerstoffmangel auf, wie dies zeitweise beim Aasee der Fall ist (s. o.), so hat auch das eine unvollständige Nitrifikation zur Folge, da der terminale Elektrodenakzeptor, nämlich Sauerstoff, knapp wird. Hierdurch wird ebenfalls die Entstehung von größeren und damit wirksamen Konzentrationen an Nitrit gefördert. Es existieren also zwei verschiedene Wege der Nitritentstehung, deren unterschiedliche Voraussetzungen im Aasee bisweilen gleichzeitig anzutreffen sind. Seine hohe und gleichzeitig permanente Belastung durch Nitrit ist daher zwangsläufig.

Abschließend bleibt festzuhalten, daß der Katalog der autochthonen Gifte und deren katastrophale Auswirkungen im Aasee Extremscheinungen darstellen, die keinesfalls im Sinne einer Ansammlung isolierter Einzelprobleme mißverstanden werden dürfen. Vielmehr sind sie zu interpretieren als finale Folgeerscheinungen der hypertrophen Gesamtsituation des Münsterschen Aasees.

6. Zusammenfassung

Die Eingeschränktheit seines Ökosystems führt zu Fehlentwicklungen wie Hypertrophierung, Sauerstoffmangel, heftige Wasserblüten vor allem verschiedener Blaualgenarten, Vergiftungsercheinungen ausgelöst durch erhöhte pH-Werte und die Bildung von Ammoniak, Nitrit, algenbürdigen Toxinen und Allergenen, Schwermetallanreicherungen in den Sedimenten, latentes Fischsterben sowie möglicherweise auch Botulismus. Der Aasee mildert die vorgeschalteten Probleme seines oberhalb liegenden Einzugsgebietes also nicht, sondern im Gegenteil: Er sammelt und verschärft sie noch!

Speziell die Tatsache, daß der Aasee zeitweise nicht phosphor-, sondern stickstofflimitiert ist, wodurch die Ausbildung von Blaualgenblüten besonders begünstigt wird, verdeutlicht seinen gefährdeten Status.

7. Literatur

Stadt Münster (1992a): Der Aasee. - Umwelt Konkret, 28 S.

WEBNER, Th. (1913): Geologie Westfalens. - Schöningh, Paderborn.

Anschrift des Verfassers:
Dr. Martin Vest, Lingener Straße 7, D-48155 Münster
Hinweise für Autoren

In der Zeitschrift Abhandlungen aus dem Westfälischen Museum für Naturkunde werden naturwissenschaftliche Beiträge veröffentlicht, die den Raum Westfalen betreffen.

Druckfertige Manuskripte sind an die Schriftleitung zu senden.

Aufbau und Form des Manuskriptes

1. Das Manuskript soll folgenden Aufbau haben: Überschrift, darunter Name (ausgeschrieben) und Wohnort des Autors, Inhaltsverzeichnis, kurze Zusammenfassung in deutscher Sprache, klar gegliederter Hauptteil, Literaturverzeichnis (Autoren alphabetisch geordnet), Anschrift des Verfassers.

2. Manuskriptblätter einseitig und weitzeilig in Maschinenschrift; zusätzlich als PC-Diskette (MS-DOS oder MAC; gängiges Programm, etwa WORD).

Beispiele:

Bei mehreren Autoren sind die Namen wie folgt zu nennen:

4. Schrifttypen im Text:

- einfach unterstrichen = Fettdruck
- unterstrichelt oder gesperrt = Sperrdruck
- wissenschaftliche Art- und Gattungsnamen sowie Namen von Pflanzengesellschaften untergeschlängeln = Kursivdruck

Autorennamen in GROSSBUCHSTABEN / KAPITÄLCHEN

Abschnitte, die in Kleindruck gebracht werden können, an linken Rand mit „petit“ kennzeichnen.

Abbildungsvorlagen

5. Die Abbildungsvorlagen (Fotos, Zeichnungen, grafische Darstellungen) müssen bei Verkleinerung auf Satzspiegelgröße (12,6 x 19,7 cm) gut lesbar sein. Größere Abbildungen (z. B. Vegetationskarten) können nur in Ausnahmefällen nach Rücksprache mit der Schriftleitung gedruckt werden.

6. Fotos sind in schwarzweißen Hochglanzabzügen vorzulegen.

8. Die Unterschriften zu den Abbildungen sind nach Nummern geordnet (Abb. 1, Abb. 2 …) auf einem separaten Blatt beizufügen.

Korrektur

Für den Inhalt der Beiträge sind die Autoren allein verantwortlich.

Jeder/s Autor/Autorenteam erhält 50 Freiexemplare/Sonderdrucke seiner Arbeit. Liegen die Herstellungskosten (incl. Mehrwertsteuer) pro Exemplar über 30,- DM, so verringert sich die Anzahl der Freiexemplare auf 30 Stück, bei Produktionskosten über 50,- DM auf 20 Stück.

Schriftleitung Abhandlungen:

Dr. Brunhild Gries
Westfälisches Museum für Naturkunde
Sentruper Straße 285
48161 Münster