25 Abb

# Goniatiten von der Namur/Westfal-Grenze im Rheinischen Schiefergebirge (Cephalopoda, Ammonoidea; Oberkarbon; Deutschland)

# Dieter Korn\*

Kurzfassung: Die Goniatiten des jüngeren Namuriums (R2 und G1 Stufen der Goniatiten-Stratigraphie) und basalen Westfaliums (G2 Stufe) des Ruhrkarbons werden auf der Basis von Sammlungsmaterial und von Neufunden revidiert. Insgesamt werden zwölf Arten der Gattungen *Ramosites, Bilinguites, Cancelloceras, Gastrioceras* und *Agastrioceras* beschrieben. *Cancelloceras cancellatum* (BISAT, 1923) wird erstmalig anhand von körperlich erhaltenem Material aus dem Rheinischen Schiefergebirge beschrieben. Für *Gastrioceras carbonarium* (VON BUCH, 1832) wird ein Lectotypus bestimmt; für *Gastrioceras subcrenatum* (FRECH, 1899) sowie *Agastrioceras carinatum* (FRECH, 1899) werden Neotypen designiert. *Ramosites hagenensis* n.sp. wird neu beschrieben.

Abstract: The late Namurian (R2 and G1 Stufen of the goniatite stratigraphy) and early Westphalian (G2 Stufe) goniatites of the Ruhr region are described on the basis of museum collections and newly collected material. In total, twelve species of the genera *Ramosites, Bilinguites, Cancelloceras, Gastrioceras,* and *Agastrioceras* are described. *Cancelloceras cancellatum* (BISAT, 1923) is described for the first time from three-dimensionally preserved material of the Rhenish Mountains. A lectotype is designated for *Gastrioceras carbonarium* (VON BUCH, 1832); neotypes are designated for *Gastrioceras subcrenatum* (FRECH, 1899) and *Agastrioceras carinatum* (FRECH, 1899). *Ramosites hagenensis* n.sp. is newly described.

# 1. Einleitung

Die oberkarbonische sedimentäre Abfolge des Steinkohlengebietes an der Ruhr kann durch die Einschaltungen von marinen Horizonten datiert und mit anderen Regionen korreliert werden. Mehrere dieser Horizonte enthalten Ammonoideen-Faunen, die den Vergesellschaftungen in den zeitgleichen Sedimenten anderer Regionen des nördlichen Variszikums, wie Südportugal, Irland, Nordengland, Belgien und Polen, entsprechen.

Oberkarbonische Goniatiten aus dem Ruhrkarbon sind bereits seit langer Zeit bekannt. Fossilien von der Grube Hoffnung bei Essen-Werden sind bereits vor 1830 gesammelt worden und gelangten in die Fossilien-Sammlungen (z.B. VON SCHLOTHEIM, OTTO; Abb. 1). Schon Leopold VON BUCH (1832), einer der Pioniere in der Paläontologie paläozoischer Ammonoideen, studierte Exemplare von *Gastrioceras* und unterschied die beiden Arten *G. listeri* (SOWERBY, 1812) und *G. carbonarium* (VON BUCH 1832). Weitere Untersuchungen und Berichte stammen dann von BEYRICH (1837, 1884), SANDBERGER & SANDBERGER (1850), ANDRÄ (1861), LUDWIG (1863) und ROEMER (1863), ohne aber den Kenntnisstand dieser Goniatiten wesentlich zu verbessern. FRECH (1899) fasste dann die bis damals erworbenen Kenntnisse zusammen und beschrieb weitere Arten, bevor WEDEKIND (1914, 1918) eine erste Revision von Arten bestimmter Faunenhorizonte vornahm. In den 20er Jahren des 20. Jahrhunderts wurden dann erste systematische Studien dieser Ammonoideen und ihrer stratigraphischen Position eingeleitet (C. SCHMIDT 1924; H. SCHMIDT 1925, 1929, 1938; HAHNE 1929). Nach einer längeren Bearbeitungspause nahm sich PATTEISKY (1959, 1964, 1965) der oberkarbonischen Goniatiten an und verfasste die ersten Monographien über diese Formen.

<sup>\*</sup> Anschrift des Verfassers

Dr. Dieter Korn, Museum für Naturkunde der Humboldt-Universität zu Berlin, Invalidenstraße 43, D-10115 Berlin, e-mail: dieter.korn@museum.hu-berlin.de



Abb. 1: Flachgedrückte Exemplare verschiedener Arten der Gattung *Gastrioceras* im Tonstein der Grube Hoffnung bei Essen-Werden, MB.C.12840 (coll. Otto); x 1,5.

Seither wurden keine weiteren umfangreichen Bearbeitungen der Goniatiten des Ruhrkarbons durchgeführt. Dies liegt sicherlich zum Teil an den immer schlechter werdenden Aufschlussverhältnissen und Fundmöglichkeiten, denn sowohl Übertage- als auch Untertage-Aufschlüsse sind mit dem Niedergang des Ruhrbergbaues unzugänglich geworden. Auch die hier vorgelegte Studie basiert vornehmlich auf Sammlungsmaterial, das bereits im 19. oder in der ersten Hälfte des 20. Jahrhunderts zusammengetragen worden ist. Es werden dabei diejenigen Arten revidiert, die durch körperlich erhaltenes Material repräsentiert sind; jene Arten, von denen entweder nur flachgedrücktes Material vorhanden ist, z.B. *Cancelloceras crenulatum* (BISAT, 1924) und *C. cumbriense* (BISAT, 1924) oder solche, von denen nur schlecht erhaltene körperlich erhaltene Exemplare vorliegen, z.B. *Anthracoceratites arcuatilobus* (Ludwig, 1863), können anhand des vorliegenden Materials nicht revidiert werden.

# Material

Das hier beschriebene Material stammt aus den oberkarbonischen Schichten des Ruhrgebietes (Abb. 2), und zwar aus Schichten der R2-Stufe (Marsdenium der britischen chronostratigraphischen Gliederung), der G1-Stufe (Yeadonium) sowie der G2-Stufe (Basis des klassischen Westfaliums). Die feinstratigraphischen Grundlagen für die Gliederung dieses Abschnittes wurden in Nordengland gelegt (z.B. BISAT 1924; HUDSON 1945) und später auf dem europäischen Festland angewandt (z.B. DEMANET 1941, 1943; DORSMANN 1945; PATTEISKY 1959, 1965).

Die hier beschriebenen Exemplare befinden sich in fünf Sammlungen:' Ruhrland-Museum, Essen: katalogisiert mit dem Präfix RE.551.735.210 (Namur-Goniatiten) und

RE.551.735.220 (Westfal-Goniatiten), hier jeweils RE.210 und RE.220 abgekürzt;

Deutsches Bergbau-Museum, Bochum: Exemplare mit dem BB. Präfix; Westfälisches Museum für Naturkunde, Münster: Exemplare mit dem WMN. Präfix; Museum für Naturkunde, Berlin: Exemplare mit dem MB.C. Präfix; Geologischer Dienst Nordrhein-Westfalen, Krefeld: Exemplare mit dem Kar Präfix.



Abb. 2: Stratigraphie der hier beschriebenen Goniatiten-Arten.

# Systematische Beschreibungen

Familie Dimorphoceratidae HYATT, 1884 Unterfamilie Glyphiolobinae Ruzhencev & Bogoslovskaya, 1969

Anthracoceratites RAMSBOTTOM, 1970

Typus-Art: Anthracoceratites deansi RAMSBOTTOM, 1970.

Anthracoceratites arcuatilobus (LUDWIG, 1863)

- 1863 Goniatites arcuatilobus Ludwig: 285, Taf. 48, Fig. 3.
- 1924 Anthracoceras arcuatilobatum.– С. Scнмidt: 383, Taf. 16, Fig. 3a,b (non 3c), Taf. 17, Fig. 4.
- 1925 Anthracoceras arcuatilobum.– Н. Schmidt: 560, Taf. 20, Fig. 16.
- 1938 Anthracoceras arcuatilobum.- DEMANET & VAN STRAELEN: 177, Taf. 130, Fig. 14, 17.
- ? 1939 Anthracoceras arcuatilobum.- WARE: Taf. 15, Abb. 9.
- pt. 1943 Anthracoceras arcuatilobum.- DEMANET: 143, Taf. 9, Fig. 12-16.
- pt. 1945 Anthracoceras arcuatilobum.- DORSMANN: 74, Taf. 10, Fig. 3, 4.
- 1959 Anthracoceras arcuatilobum.- PATTEISKY: 38, Taf. 9, Fig. 40, 41.
- 1965 Anthracoceras arcuatilobum.– PATTEISKY: 8.
- ? 1986 Anthracoceras arcuatilobum.- Korejwo: Taf. 27, Fig. 4.
  - 1997 Anthracoceratites arcuatilobus.- KORN: 48, Abb. 37.

**Typen:** Das Typus-Material ist seit der Beschreibung durch Ludwig nicht revidiert worden und ist möglicherweise verloren gegangen.

Locus typicus/ Stratum typicum: Das Original-Material stammt von der Grube Hiddingshausen bei Sprockhövel aus Sideritknollen mit *Cancelloceras crencellatum* (BISAT, 1924) und *Agastrioceras carinatum* (FRECH, 1899); das Alter ist wahrscheinlich G1a.

**Material:** 3 Exemplare von 6–9 mm Dm in einer Carbonatknolle von Silschede (RE). Das Material ist nicht für eine Revision der Art geeignet. Die drei vorliegenden Exemplare sind Steinkerne mit Schalenresten. Sie haben eine wellige Oberfläche, bedingt durch intern verstärkte Anwachsstreifen, welche bikonvex mit hohem Ventrolateralvorsprung verlaufen.

Familie Ramositidae Ruzhencev & Bogoslovskaya, 1969

Ramosites Ruzhencev & Bogoslovskaya, 1969

Typus-Art: Ramosites ramosus Ruzhencev & Bogoslovskaya, 1969.

# Ramosites hagenensis n. sp.

Abb. 3, 4

- cf. 1990 Cravenoceratoides cf. edalense.- Michelau & Paproth: 57.
- cf. 1990 *Cravenoceratoides* sp. aff. *stellarum.* MICHELAU & PAPROTH: 57. 2005 *Ramosites* sp. KORN: 68, Abb. 7.

Name: Nach der Stadt Hagen in Westfalen benannt.

Holotypus: Exemplar WMN.P30431; hier abgebildet in Abb. 3.

Locus typicus/ Stratum typicum: Ehemalige Ziegeleigrube Schütte & Tücking bei Hagen-Vorhalle; *Bilinguites metabilinguis*-Zone (obere R2-Stufe, Marsdenium).

# Material:

Hagen-Vorhalle, ehemalige Ziegeleigrube der Firma Schütte & Tücking: ein gut erhaltenes Exemplar mit 80 mm Gehäusedurchmesser (WMN.P30431);

Heiligenhaus, Eisenstein-Mutung Carl Friedrich II: zwei fragliche kleine erhaltene Exemplare (Kar 2464, Kar 2465; leg. MICHELAU).

**Diagnose:** *Ramosites* mit scheibenförmigen Gehäuse bei 40–80 mm Dm (Wb/Dm = 0,40–0,50) und sehr engem Nabel (Nw/Dm = 0,05). Nabelrand gerundet, Flanken konvergieren deutlich zur breit gerundeten



Abb. 3: Ramosites hagenensis n. sp.; Holotypus WMN.P30431 von Hagen-Vorhalle; x 1,5.

Externseite. Ornamentierung mit lamellenartigen bikonvex verlaufenden Anwachsstreifen. Lobenlinie mit sehr weitem Externlobus (EL/H = 1,10 bzw. 2,50 des Adventivlobus) und mäßig hohem Mediansattel (0,50 des Ventrolateralsattels).

# Beschreibung:

**Gehäuse:** Das einzige charakteristische vorliegende Exemplar, Holotypus WMN.P30431 (Abb. 3), hat 80 mm Gehäusedurchmesser und ist noch vollständig gekammert. Es gehört zu einem wesentlich größeren Individuum von mindestens 120 mm Durchmesser. Beim maximalen Durchmesser der gut erhaltenen Partie ist das Gehäuse scheibenförmig (Wb/Dm = 0,42) mit sehr engem Nabel (Nw/Dm = 0,05) und hoher Mündung (Windungsexpansionsrate 2,35). Die breiteste Stelle des Gehäuses liegt im inneren Flankenbereich in einigem Abstand zur trichterförmigen Nabeleinsenkung. Die Flanken konvergieren deutlich in Richtung der breit gerundeten Externseite.

# Abmessungen in mm und Gehäuse-Proportionen:

| •          | Dm   | Wh   | Wh   | Nw   | Mh    | Wh/Dm    | \//h/\//h | Nw/Dm   | WFR    | I7R  |
|------------|------|------|------|------|-------|----------|-----------|---------|--------|------|
|            | DIII | ***  |      | 1400 | IVIII | VVD/DIII |           | NW/DIII | VV LIX | 1213 |
| WMN.P30431 | 79,9 | 33,3 | 45,5 | 4,2  | 27,8  | 0,42     | 0,73      | 0,05    | 2,35   | 0,39 |
|            | 46,7 | 23,9 | 26,6 | 3,0  |       | 0,51     | 0,90      | 0,06    |        |      |

**Ornament:** Weite Bereiche des Exemplars sind mit Schalenresten bedeckt. Diese zeigen ein deutliches Radialornament mit bikonvex verlaufenden, kräftigen lamellenartigen Anwachsstreifen, welche einen deutlichen Dorsolateralvorsprung, eine seichte Flankenbucht, einen mäßig hohen Ventrolateralvorsprung und eine tiefe, V-förmige Externbucht besitzen. Der Abstand der Anwachslamellen beträgt auf der Externseite 0,8–1,0 mm.

**Lobenlinie:** Die Lobenlinie des Holotypus hat, bei einer Windungshöhe von 22 mm, einen sehr breiten Externlobus (in halber Tiefe gemessen ein Breiten/Höhenverhältnis von 1,12; der Externlobus hat eine Brei-



Abb. 4: *Ramosites hagenensis* n. sp.; Lobenlinie des Holotypus WMN.P30431 bei 20 mm Wb, 22 mm Wh; x 4.

te von 2,50 des Adventivlobus) mit einem Mediansattel, der bis zur Hälfte des Externlobus ragt (Abb. 4). Die sekundären Äste des Externlobus sind deutlich asymmetrisch mit stark gebogenem ventralen Schenkel. Auf der Flanke des Gehäuses folgen der schmale, schwach asymmetrische und recht eng gerundete Ventrolateralsattel und der V-förmige, asymmetrische Adventivlobus, dessen dorsale Flanke stärker gebogen ist als die ventrale.

**Bemerkungen:** *Ramosites* ist eine recht seltene Gattung im Ruhrkarbon. Vorkommen wurden zum Teil fehlgedeutet, wie von MICHELAU & PAPROTH (1990), wo schlecht erhaltene, tatsächlich zu *Ramosites* gehörende Reste zu *Cravenoceratoides* gestellt wurden.

**Beziehungen:** Die meisten Arten von *Ramosites* sind aus dem Süd-Ural bekannt (RUZHENCEV & BOGOS-LOVSKAYA 1978). Alle diese Arten unterscheiden sich von *Ramosites hagenensis* durch den weiteren Nabel, der in vergleichbaren Größenstadien stets mehr als 0,10 des Gehäusedurchmessers beträgt. Die meisten dieser Arten besitzt zudem einen schmaleren Externlobus; lediglich *R. brevisellatus* zeigt hier Ähnlichkeit mit *R. hagenensis*. *R. praesagus* RUZHENCEV & BOGOSLOVSKAYA, 1978 aus Zentral-Asien hat einen engen Nabel wie *R. hagenensis*; diese Art zeigt aber einen engeren Externlobus und ein flacheres Gehäuse als *R. hagenensis*. *R. divaricatus* (HIND, 1905) aus Nordengland, sowie auch *R. quebradas* KORN, 1997 und *R. sousai* KORN, 1997 aus Südportugal haben ein flacheres Gehäuse als *R. hagenensis*.

**Stratigraphische und geographische Verbreitung:** Obere R2-Stufe (Marsdenium der britischen Gliederung). Bisher nur aus dem Rheinischen Schiefergebirge bekannt.

Familie Reticuloceratidae LIBROVITCH, 1957

Bilinguites LIBROVITCH, 1946

**Typus-Art:** *Reticuloceras reticulatum* mut.  $\gamma$  = *super-bilingue* BISAT, 1924.

# Bilinguites metabilinguis (WRIGHT, 1927)

Abb. 5

- pt. 1897 Glyphioceras Davisi FOORD & CRICK: 198, Abb. 95.
- pt. 1925 Eumorphoceras superbilingue.- H. SCHMIDT: 590.
  - 1926 Reticuloceras reticulatum early mut. γ WRIGHT: 194, Taf. 12, Fig. 1, 2, 6.
  - 1927 *Reticuloceras reticulatum* early mut. γ = *metabilingue* WRIGHT: 114, Taf. 6, Fig. 1, 2, 6.
  - 1929 Reticuloceras superbilingue.- HAHNE: 322, 330, Taf. 12, Fig. 1-3,
  - 1929 Reticuloceras metabilingue.- HAHNE: 323, Taf. 12, Fig. 4-6.
- pt. 1941 Reticuloceras superbilingue.- DEMANET: 281.
  - 1957 *Reticuloceras superbilingue.* PATTEISKY: 518, Taf. 1, Fig. 5.
  - 1959 *Reticuloceras superbilingue metabilingue*.– PATTEISKY: 25, Taf. 1, Fig. 36, Taf. 7, Fig. 1–24, Taf. 8, Fig. 1–31, Taf. 9, Fig. 38, 39.
- ? 1960 Reticuloceras metabilingue.- CHALARD & DAVINVAL: 7, Taf. 1, Fig. 1.

- 1961 Reticuloceras metabilingue.- BOUCKAERT: Abb. 1.
- 1974 Bilinguites metabilingue.- PITINOVA: 61, Taf. 12, Fig. 1, 2.
- 1978 Bilinguites metabilinguis.- RUZHENCEV & BOGOSLOVSKAYA: 283, Taf. 37, Fig. 1–3.
- 1985 Bilinguites metabilinguis.- BRAUCKMANN, KOCH & KEMPER: Taf. 23, Fig. 1.
- 1987 Bilinguites metabilinguis.– SHENG: 165, Taf. 3, Fig. 4–7, Abb. 20.
- 1990 Eumorphoceras bisulcatum.- MICHELAU & PAPROTH: 57.
- 1997 Bilinguites metabilinguis.- KORN: 81, Taf. 13, Fig. 1-4, Abb. 63.
- 2005 Bilinguites metabilinguis.- KORN: 66, Abb. 1-6, 9, 12.

Holotypus: Exemplar Nr. 37930, British Geological Survery, Keyworth, Nottingham.

Locus typicus/ Stratum typicum: 250 m südöstlich von Witton's Farm, Hall Wood, Longworth Valley bei Egerton (Lancashire, Großbritannien); marine Horizonte über dem Helmshore Grit (R2c-Zone).

# Material:

- Hagen-Vorhalle, ehemaliger Ziegeleigrube der Firma SCHÜTTE & TÜCKING: reiches Material im Westfälischen Museum für Naturkunde, Münster; 13 dieser Exemplare sind vollkörperlich erhalten und stammen aus sideritischen Knollen; sie liegen zwischen 8 und 71 mm Gehäusedurchmesser. Dazu kommt eine große Anzahl von flachgedrückten Exemplaren unterschiedlicher Größe, die zum Teil in Clustern von 50 und mehr Exemplaren auf den Schichtflächen angehäuft sind (KORN 2005);
- Hagen-Vorhalle, Autobahnunterführung östlich des Bahnhofes: körperlich erhaltenes Exemplar BB.676 (Abb. 5C), flachgedrücktes Exemplar BB.640 (leg. PATTEISKY; Abb. 5D);

Haßlinghausen, Schiefertongrube: flachgedrücktes Exemplar BB.323 (Abb. 5E);

Heiligenhaus, Eisenstein-Mutung Carl Friedrich II: vier kleine körperlich erhaltene Exemplare (Kar 2460–Kar 2463, Abb. 5H, I; leg. MICHELAU).

**Diagnose:** *Bilinguites* mit dickscheibenförmigen Gehäuse bei 12 mm Dm (Wb/Dm = 0,60) mit engem Nabel (Nw/Dm = 0,20–0,25); Gehäuse scheibenförmig bei 25 mm Dm (Wb/Dm = 0,50), mit engem bis sehr engem Nabel (Nw/Dm = 0,10–0,20). Nabelrand angular, Flanken mit zwei ventrolateralen Längsfurchen im mittleren Wachstumsstadium. Altersgehäuse mit dachförmigem Windungsquerschnitt und zugeschärfter Externseite. Ornamentierung mit radialen Rippen bis 8 mm Dm, später mit schwach gezähnelten Anwachsstreifen und feinen Spiralstreifen. Verlauf der Anwachsstreifen stark bikonvex, mit hohem und schmalen Ventrolateralvorsprung und tiefer Ventralbucht. Lobenlinie mit mäßig weitem Externlobus (EL/H = 0,80) und niedrigem Mediansattel (0,30 des Ventrolateralsattels).

# Beschreibung:

**Gehäuse:** Während der Ontogenese sind erhebliche Änderungen in der Gehäusegeometrie zu beobachten. Jugendstadien bis etwa 10 mm Durchmesser zeigen einen recht weiten Nabel (Nw/Dm = 0,40 bei 8 mm Dm), der sich dann aber rasch schließt. Bereits bei 20 mm Dm ist der Nabel auf eine Weite von einem Fünftel des Gehäusedurchmessers zurückgegangen und bleibt bei dieser relativen Weite für den Rest des Gehäusewachstums. Zwischen 8 und 70 mm Durchmesser wird die Gehäuseform kontinuierlich schmaler. Während das Gehäuse bei 10 mm Dm noch dickscheibenförmig ist (Wb/Dm = 0,50–0,60), so beträgt dieses Verhältnis bei 70 mm Dm nur noch 0,37. Mit der Abflachung des Gehäuses geht eine Änderung der Form der Externseite einher. Bei 35 mm Dm ist diese noch gleichmäßig gerundet; danach schärft sie sich langsam zu. Das größte Exemplar WMN.P30415 zeigt dann bei 70 mm Dm die Alters-Morphologie mit abgeplatteten Flanken, die im Ventrolateralbereich mit einem Knick gegen die sehr schmale, fast scharfkantige Externseite konvergieren. Die Nabelkante ist deutlich ausgebildet, aber gerundet (Abb. 5A).

|             | Dm   | Wb   | Wh   | Nw   | Mh   | Wb/Dm | Wb/Wh | Nw/Dm | WER  | IZR  |
|-------------|------|------|------|------|------|-------|-------|-------|------|------|
| WMN.P30428  | 71,3 | 26,2 | 32,9 | 14,4 | 19,0 | 0,37  | 0,80  | 0,20  | 1,86 | 0,42 |
| WMN.P30415  | 31,2 | -    | 13,8 | 8,2  | 9,2  | -     | -     | 0,26  | 2,01 | 0,34 |
| WMN.P30406  | 26,3 | 12,9 | 13,3 | 5,3  | 6,9  | 0,49  | 0,97  | 0,20  | 1,84 | 0,48 |
| WMN.P30431d | 26,2 | 11,7 | 12,7 | 4,2  | 7,4  | 0,45  | 0,92  | 0,16  | 1,93 | 0,42 |
| WMN.P30428  | 23,4 | 11,4 | 11,7 | 4,1  | 6,5  | 0,49  | 0,97  | 0,17  | 1,92 | 0,44 |
| WMN.P30427  | 12,3 | 6,6  | 5,7  | 3,6  | 3,4  | 0,54  | 1,16  | 0,29  | 1,92 | 0,40 |
| WMN.P30431e | 10,5 | 6,0  | 5,4  | -    | 3,0  | 0,57  | 1,12  | -     | 1,93 | 0,45 |
| WMN.P30431b | 8,7  | 5,0  | 3,4  | 3,5  | 2,2  | 0,57  | 1,47  | 0,40  | 1,79 | 0,35 |

#### Abmessungen in mm und Gehäuse-Proportionen:



Abb. 5: *Bilinguites metabilinguis* (WRIGHT, 1927). A – Exemplar WMN.P30415 von Hagen-Vorhalle; x 1. B – Exemplar WMN.P30406 von Hagen-Vorhalle; x 1,5. C – Exemplar BB.676 von Hagen-Vorhalle; x 2,5. D – Exemplar BB.640 von Hagen-Vorhalle; x 1. E – Exemplar BB.323 von Haßlinghausen; x 1,5. F – Exemplar WMN.P30405 von Hagen-Vorhalle; x 2,5. G – Exemplar WMN.P30846 von Hagen-Vorhalle; x 1,5. H – Exemplar Kar 2461 von Heiligenhaus; x 2,5. I – Exemplar Kar 2460 von Heiligenhaus; x 3.

**Ornament:** Die Exemplare von Hagen-Vorhalle erlauben das Studium der ontogenetischen Entwicklung des Ornamentes. Bei 8 mm Dm (WMN.P30431b) trägt das Gehäuse 20–24 scharfe Flankenrippen, die zu einem Ventrolateralvorsprung kräftig nach vorn gebogen sind und an der ventrolateralen Spiralfurche verschwinden.

Die Rippen werden in größeren Stadien rasch schwächer und sind bereits bei 13 mm Dm (WMN.P30431c) nicht mehr erkennbar. Stattdessen treten hier kräftige Anwachsstreifen mit sehr gut ausgebildetem Ventrolateralvorsprung und tiefer Externbucht auf.

Exemplare mit gut erhaltenen Schalenresten, wie WMN.P30403 (25 mm Dm) zeigen feine Anwachsstreifen mit schwacher Zähnelung. Die doppelte ventrolaterale Längsfurche ist in diesem Stadium gut ausgebildet. Auf der Externseite ist eine halbkreisförmige Einschnürung des Steinkerns erkennbar. Das etwa gleich große Exemplar WMN.P30406 (26 mm Dm) zeigt diese Einschnürung besonders deutlich; diese ist auch auf der Flanke, allerdings weniger deutlich, erkennbar (Abb. 5B).

Das größte vorliegende körperlich erhaltene Exemplar WMN.P30415 (71 mm Dm) besitzt Schalenreste, die recht deutlich gezähnelte, feine Anwachsstreifen zeigen (Abb. 5A). Sie verlaufen deutlich bikonvex mit sehr schwachem Dorsolateralvorsprung, seichter Flankenbucht, hohem Ventrolateralvorsprung und sehr tiefer, V-förmiger Externbucht.

Die flach gedrückten Exemplare von Hagen-Vorhalle bestätigen die Befunde der körperlichen Exemplare. In zahlreichen Fällen ist das Ornament sogar erheblich besser zu erkennen (Abb. 5F, G).

**Lobenlinie**: Eine vollständige Lobenlinie konnte am vorliegenden Exemplar nicht studiert werden. Fragmente deuten darauf hin, dass ein gerundeter Adventivlobus vorliegt, wie an portugiesischem Material von KORN (1997) gezeigt wurde.

**Beziehungen:** *Bilinguites metabilinguis* nimmt hinsichtlich der Ornamentierung eine Stellung zwischen *B. bilinguis* (SALTER, 1864) und *B. superbilinguis* (BISAT, 1924) ein. Erstere zeigt noch deutlicher gezähnelte Anwachsstreifen mit weniger deutlich ausgebildetem Ventrolateralvorsprung; letzterer fehlt die Zähnelung und der Ventrolateralvorsprung ist noch höher als bei *B. metabilinguis*.

**Stratigraphische und geographische Verbreitung:** Die Art ist Leitfossil für die obere R2-Zone (jüngeres Marsdenium der britischen Gliederung); sie hat eine weite Verbreitung von Südportugal über die Britischen Inseln, Mitteleuropa bis hin zum Südural.

# Bilinguites superbilinguis (BISAT, 1924)

Abb. 6

| *   | 1924 | <i>Reticuloceras reticulatum</i> mut. γ = <i>super-bilingue</i> Bisat: 51, 117, Taf. 5, Fig. 5–7. |
|-----|------|---------------------------------------------------------------------------------------------------|
| non | 1924 | Eumorphoceras cf. superbilingue.– С. Scнмidt: 372, Taf. 14, Fig. 1.                               |
|     | 1925 | Eumorphoceras superbilingue.– Н. Scнмирт: 589, Taf. 22, Fig. 9, Taf. 25, Fig. 24–26.              |
|     | 1926 | Reticuloceras reticulatum mut. y WRIGHT: 192.                                                     |
|     | 1927 | Reticuloceras reticulatum mut. γ = mut. superbilingue WRIGHT: 114.                                |
|     | 1929 | Reticuloceras superbilingue.– Н. Scнмidt: 72, Taf. 19, Fig. 13, 14.                               |
|     | 1931 | Reticuloceras superbilingue DELÉPINE IN DE DORLODOT & DELÉPINE: 65, Taf. 25, Fig. 24-26.          |
|     | 1938 | Reticuloceras superbilingue.– Н. Scнмідт in Кикик: 119, Fig. 104.                                 |
|     | 1938 | Reticuloceras superbilingue Demanet & van Straelen: 183, Taf. 135, Fig. 12–15.                    |
|     | 1939 | Reticuloceras superbilingue.– Ware: Taf. 15, Fig. 7.                                              |
|     | 1941 | Reticuloceras superbilingue DEMANET: 281, Taf. 18, Fig. 6-9.                                      |
|     | 1941 | Reticuloceras superbilingue LIBROVITCH: 151, Taf. 39, Fig. 8.                                     |
|     | 1945 | Reticuloceras superbilingue.– Dorsman: 69, Taf. 10, Fig. 7.                                       |
|     | 1959 | Reticuloceras superbilingue superbilingue.– Раттеляку: 27, Taf. 9, Fig. 19–37.                    |
|     | 1960 | Reticuloceras superbilingue BUTCHER & HODSON: Taf. 19, Fig. 7.                                    |
|     | 1961 | Reticuloceras superbilingue.– Bouckaert: Fig. 1.                                                  |
|     | 1962 | Bilinguites superbilinguis Bogoslovskiy, Librovitch & Ruzhencev: Taf. 22, Fig. 4-6.               |
|     | 1967 | Reticuloceras superbilingue Korejwo & Teller: Taf. 2, Fig. 1-3, Taf. 3, Fig. 1.                   |
|     | 1968 | Reticuloceras superbilingue KOREJWO & TELLER: 175, Taf. 20, Fig. 1-3, Taf. 21, Fig. 1-3.          |
|     | 1969 | Reticuloceras superbilingue KOREJWO: 707, Taf. 35, Fig. 3, Taf. 36, Fig. 1.                       |
|     | 1978 | Bilinguites superbilinguis RUZHENCEV & BOGOSLOVSKAYA: 284, Taf. 37, Fig. 4-7.                     |
|     | 1979 | Bilinguites superbilinguis POPOV: 74, Taf. 8, Fig. 1-4.                                           |
|     | 1979 | Reticuloceras superbilingue. – Oliveira, Horn & Paproth: 160.                                     |
|     | 1983 | Bilinguites superbilinguis.– Gao: 472, Taf. 155, Fig. 9.                                          |
|     | 1986 | Reticuloceras superbilingue KOREJWO: Taf. 29, Fig. 1a-c, Taf. 31, Fig. 1.                         |
|     | 1987 | Bilinguites superbilingue SHENG: 164, Taf. 2, Fig. 1-6, Abb. 19.                                  |
|     | 1997 | Bilinguites superbilinguis Korn: 83, Taf. 13, Fig. 5.                                             |

**Typus:** Ein Typus-Exemplar ist bislang nicht ausgewählt worden. **Material:** 

- Herbede, Zeche Lothringen (mariner Horizont Cremer): flachgedrückte Exemplare (BB.714, BB.931 abgebildet in Abb. 6B, BB.945; leg. PATTEISKY);
- Herbede, Halde der Zeche Lothringen: 3 körperlich erhaltene Exemplare (MB.C.12832.1–MB.C.12832.3, coll. BOTTKE).

**Diagnose:** *Bilinguites* mit dickscheibenförmigen Gehäuse bei 12 mm Dm (Wb/Dm = 0,55) mit engem Nabel (Nw/Dm = 0,20–0,25); Gehäuse scheibenförmig bei 25 mm Dm (Wb/Dm = 0,50), mit engem bis sehr engem Nabel (Nw/Dm = 0,10–0,20). Nabelrand angular, Flanken mit zwei ventrolateralen Furchen im mittleren Wachstumsstadium. Ornamentierung mit radialen Rippen bis 8 mm Dm, später mit ungezähnelten Anwachsstreifen, ohne Spiralstreifen. Verlauf der Anwachsstreifen stark bikonvex, mit hohem und schmalen Ventrolateralvorsprung und tiefer Ventralbucht.



Abb. 6: *Bilinguites superbilinguis* (BISAT, 1924) von Herbede. A – Exemplar MB.C.12832.1; x 3. A – Exemplar BB.931; x 2.

**Beschreibung:** Das vorliegende Material reicht nicht aus, um die Artbeschreibung zu erweitern oder zu revidieren. Hier wird ein körperlich erhaltenes Exemplar aus Vergleichszwecken abgebildet (Abb. 6A). Für eine Beschreibung von umfangreicherem flach gedrücktem Material wird daher auf PATTEISKY (1959) verwiesen.

Familie Gastrioceratidae HYATT, 1884

Cancelloceras Ruzhencev & Bogoslovskaya, 1969

Typus-Art: Gastrioceras cancellatum BISAT, 1923.

Cancelloceras cancellatum (BISAT, 1923)

Abb. 7, 8

- 1923 Gastrioceras cancellatum BISAT: 47, Taf. 8.
- 1931 Gastrioceras cancellatum.- DELÉPINE in de DORLODOT & DELÉPINE: 69, Taf. 3, Fig. 1–8, Taf. 8, Fig. 8.
- 1941 Gastrioceras cancellatum.- DELÉPINE: 87, Taf. 7, Fig. 28-29.
- non 1941 *Gastrioceras cancellatum.* DEMANET: 283, Taf. 18, Fig. 10–13 [= *Agastrioceras carinatum* (FRECH, 1899), *Cancelloceras crencellatum* (BISAT, 1924)].
  - 1941 Gastrioceras cancellatum. Delépine: 69, Taf. 3, Fig. 1–7.
  - 1941 Gastrioceras cancellatum.- LIBROVITCH: 152, Taf. 40, Fig. 7.
- non 1945 *Gastrioceras cancellatum.* DORSMANN: 73, Taf. 10, Fig. 10. [= *Agastrioceras carinatum* (FRECH, 1899)] 1959 *Gastrioceras cancellatum cancellatum.*– PATTEISKY: 30.
- ? 1959 Gastrioceras? sigma.- PATTEISKY: 36, Taf. 9, Fig. 1-9, Taf. 12, Fig. 25, 26.
  - 1962 Gastrioceras cancellatum.- RAMSBOTTOM & CALVER: 574, Taf. 14, Fig. 4, 5.
  - 1979 Gastrioceras cancellatum.- OLIVERA, HORN & PAPROTH: 160, Taf. 3, Fig. 2.
  - 1979 Cancelloceras cancellatum.- POPOV: 77, Taf. 9, Fig. 2-5.
  - 1995 Cancelloceras (Crencelloceras) oliveirai Nikolaeva & Kullmann: 370 Abb. 6B, T
  - 1997 Cancelloceras cancellatum.- KORN: 83, Taf. 13, Fig. 6-11.

**Lectotypus:** Exemplar Nr. c25767, British Museum of Natural History, London (ausgewählt von RAMSBOTTOM & CALVER 1962: 574).

Locus typicus/ Stratum typicum: Ring Road cutting, Meanwood, Leeds (Yorkshire); unterhalb des Rough Rock (G1a-Zone).

Material:

Herbede, Halde der Zeche Lothringen: 25 Exemplare zwischen wenigen mm und 39 mm Durchmesser aus einer einzigen Knolle (MB.C.12831.1–12831.25, coll. Bottke);

Essen-Werden, Zeche Pörtingssiepen: 125 Exemplare zwischen wenigen mm und 44 mm Durchmesser aus einer einzigen Knolle (RE.210.A0325 bis RE.210.0374, RE.210.0407 bis RE.210.0429, RE.210.427/1-8, RE.210.428/1-8, RE.210.0436/1-3).

**Diagnose:** *Cancelloceras* mit pachyconischem Gehäuse bei 15 mm Dm (Wb/Dm = 0,65) mit mäßig weitem Nabel (Nw/Dm = 0,40–0,45); Gehäuse dickscheibenförmig bei 30 mm Dm (Wb/Dm = 0,50) mit engem bis mäßig weitem Nabel (Nw/Dm = 0,25–0,35). Nabelrand schwach kantig, Flanken und Externseite breit gerundet. Ornamentierung bei 30 mm Dm mit schwachen kurzen Knoten auf der Nabelkante, gebündelten crenulierten Anwachsstreifen und kräftigen Spiralstreifen. Lobenlinie mit breitem Externlobus (EL/H = 0,90; 1,55 des Adventivlobus) und mäßig hohem Mediansattel (0,55 des Ventrolateralsattels).



Abb. 7: Cancelloceras cancellatum (BISAT, 1923). A – Exemplar RE.210.A0331 von Essen-Werden, Zeche Pörtingssiepen; x 1,5. B – Exemplar RE.210.A0408 von Essen-Werden, Zeche Pörtingssiepen; x 1,5. C – Exemplar MB.C.12831.1 von Herbede, Zeche Lothringen; x 1,5. D – Exemplar MB.C.12831.2 von Herbede, Zeche Lothringen; x 2. E – Exemplar MB.C.12831.3 von Herbede, Zeche Lothringen; x 3.

**Beschreibung:** Die Beschreibung der Art basiert hauptsächlich auf den vier Exemplaren RE.210.A331, MB.C.12831.1, MB.C.12831.2 und MB.C.12831.3, erstere von Zeche Pörtingssiepen, die anderen drei von der Zeche Lothringen. Damit wird eine ontogenetische Spanne von 10 bis annähernd 45 mm Gehäusedurchmesser abgedeckt (Abb. 8D, E).

**Gehäuse:** Das größte vorliegende Exemplar ist RE.210.A0331 mit 44 mm Durchmesser (Abb. 7A). Es ist scheibenförmig (Wb/Dm = 0,43) mit einem recht weiten Nabel (Nw/Dm = 0,34), welcher sich auf der letzten Windung deutlich öffnet. Die Nabelkante ist eckig und etwas emporgehoben.

Exemplar MB.C.12831.1 (Abb. 7C) hat bei 38 mm Durchmesser ein dickscheibenförmiges Gehäuse (Wb/Dm = 0,47) mit recht engem Nabel (Nw/Dm = 0,27). Es zeigt eine abgeflachte, fast senkrecht stehende Nabelwand, die durch eine scharfe Kante von den leicht abgeflachten, zur breit gerundeten Externseite konvergierenden Flanken getrennt ist. Im Ventrolateralbereich ist eine undeutliche Kante ausgebildet, die Flanken und Externseite trennt. Die Mündung ist recht hoch und bewirkt eine Windungsexpansionsrate von 1,90.

Exemplar MB.C.12831.2 (22 mm Dm) hat eine ähnliche Gehäuseform (Abb. 7D), ist aber etwas hochmündiger (WER = 1,97). Die Nabelkante ist bei diesem Exemplar noch nicht deutlich ausgebildet. Das kleine Exemplar MB.C.12831.3 (11 mm Dm) hat einen weiteren Nabel als die größeren Exemplare, eine gerundete Begrenzung des Nabels und einen nierenförmigen Windungsquerschnitt.



Abb. 8: Cancelloceras cancellatum (BISAT, 1923). A – Verlauf der Anwachsstreifen bei Exemplar MB.C.12831.1 von Herbede, bei 12,8 mm Wb, 9,5 mm Wh; x 5. B – Lobenlinie von Exemplar MB.C.12831.2 von Herbede, bei 8,1 mm Wb, 6,3 mm Wh; x 7,5. C – Lobenlinie von Exemplar MB.C.12831.1 von Herbede, bei 12,6 mm Wb, 9,3 mm Wh; x 5. D, E – biometrische Analyse der Gehäuseontogenese.

| Abmessungen in min und Genause-Proportionen. |      |      |      |      |      |       |       |       |      |      |  |  |  |
|----------------------------------------------|------|------|------|------|------|-------|-------|-------|------|------|--|--|--|
|                                              | Dm   | Wb   | Wh   | Nw   | Mh   | Wb/Dm | Wb/Wh | Nw/Dm | WER  | IZR  |  |  |  |
| RE.210.A0331                                 | 44,1 | 18,8 | 14,9 | 15,2 | 11,5 | 0,43  | 1,26  | 0,34  | 1,83 | 0,23 |  |  |  |
| MB.C.12831.1                                 | 38,4 | 18,2 | 15,5 | 10,4 | 10,5 | 0,47  | 1,17  | 0,27  | 1,90 | 0,32 |  |  |  |
| RE.210.A0332                                 | 38,2 | 18,4 | 13,2 | 13,5 | 10,1 | 0,48  | 1,39  | 0,35  | 1,85 | 0,23 |  |  |  |
| MB.C.12831.2                                 | 22,7 | 11,3 | 10,5 | 6,4  | 6,5  | 0,50  | 1,08  | 0,28  | 1,97 | 0,38 |  |  |  |

ann in mm und Cahäusa Dranartianan

| RE.210.A0427/3 | 15,7 | 9,5 | 7,7 | 5,3 | 4,4 | 0,61 | 1,23 | 0,34 | 1,93 | 0,43 |
|----------------|------|-----|-----|-----|-----|------|------|------|------|------|
| MB.C.12831.4   | 13,0 | 7,3 | 6,0 | 4,1 | 3,7 | 0,56 | 1,22 | 0,31 | 1,94 | 0,39 |
| MB.C.12831.3   | 11,1 | 6,0 | 4,5 | 3,7 | 2,7 | 0,54 | 1,34 | 0,33 | 1,72 | 0,41 |

Ornament: Das Ornament besteht aus einer Kombination von feinen Anwachsstreifen, feinen Spiralstreifen, schwachen Rippen und Einschnürungen. Die Anwachsstreifen sind bei Exemplar MB.C.12831.1 deutlich gezähnelt (Abb. 7C); sie verlaufen bikonvex mit niedrigem Dorsolateralvorsprung, seichter Flankenbucht, mäßig hohem Ventrolateralvorsprung und tiefer Ventralbucht Abb. 8A). Bei dem Exemplar sind sie besonders gut am Beginn der letzten Windung zu erkennen; gegen Windungsende zeigen kleine Schalenreste extrem dicht stehende Anwachsstreifen. Aus der Kombination von Anwachstreifen und feinen, recht weit stehende Spiralstreifen entsteht in geringer Entfernung vom Nabel eine netzartige Ornamentierung, die mit den nicht kontinuierlich fortgesetzten, sondern leicht versetzten Spiralstreifen an ein Spinnennetz erinnert. Auf der Nabelkante befinden sicht kurze, scharfe Rippen; diese sind in unregelmäßigen Abständen angeordnet. Auf dem Schalenrest ist zudem eine schwache, den Anwachstreifen parallel verlaufende Einschnürung ausgebildet. Der Steinkern zeigt auf Flanken und Externseite eine durch rhythmische Verstärkung der Anwachsstreifen erzeugte Wellung sowie besonders auf der Externseite auch eine Durchprägung der Spiralstreifen. In unregelmäßigen Abständen treten seichte Einschnürungen des Steinkerns auf.

Bei dem kleinen Exemplar MB.C.12831.3 (11 mm Dm) handelt es sich um einen Steinkern, der auf einer Windung 25 scharfe, auf die innere Flankenregion beschränkte, schwach nach hinten gerichtete Rippen besitzt. Der Steinkern trägt ferner schwache Einschnürungen (Abb. 7E).

Lobenlinie: Lobenlinien konnten von den beiden Exemplaren MB.C.12831.1 (bei etwa 23 mm Dm) und MB.C.12831.2 (bei etwa 15 mm Dm) abgezeichnet werden. Das größere Exemplar erlaubt nur das Studium des Externlobus, welcher fast parallelwandig mit lanzettförmigen Sekundärloben ist (Abb. 8C). Der Mediansattel erreicht etwa die halbe Höhe des Externlobus. Das kleinere Exemplar zeigt eine eher jugendliche Lobenlinie mit breitem, parallelwandigen Externlobus, sehr breitem und breit gerundeten Ventrolateralsattel und recht kleinem, V-förmigen Adventivlobus (Abb. 8B).

Bemerkungen: Cancelloceras cancellatum fehlt in den bisher erschienenen Monographien über die Goniatiten des Ruhrkarbons. Das hier beschriebene Material stimmt in Gehäusemorphologie und Ornament weitgehend mit dem ebenfalls körperlich erhaltenen Material aus der Südportugiesischen Zone überein (KORN 1997), welches von NIKOLAEVA & KULLMANN (1995) als selbständige Art Cancelloceras oliveirai abgetrennt worden ist. Unterscheidende Kriterien sind nicht vorhanden; daher wird diese Art als jüngeres Synonym aufgefasst.

Beziehungen: Cancelloceras crencellatum (BISAT, 1924) hat ein breiteres Gehäuse mit einem weiteren Nabel und ist daher zumindest bei körperlich erhaltenem Material leicht von C. cancellatum zu unterscheiden. Agastrioceras carinatum (FRECH, 1899) zeigt eine sehr ähnliche Ornamentierung und könnte bei flach gedrückter Erhaltung mit C. cancellatum verwechselt werden; diese Art zeigt jedoch schon im mittleren Wachstumsstadium eine zugeschärfte Externseite und ist demnach leicht von C. cancellatum zu unterscheiden.

Stratigraphische und geographische Verbreitung: Basale G1-Stufe (basales Yeadonium der britischen Gliederung); Nordengland, Südportugal, Mitteleuropa (Belgien, Rheinisches Schiefergebirge) und Osteuropa (Ukraine).

#### Cancelloceras crencellatum (BISAT, 1924) Abb. 9, 10

(?) 1863

- Clymenia spirorbis Ludwig: 284, Taf. 48, Fig. 1. Glyphioceras reticulatum FRECH: Taf. 46b, Fig. 7e. 1899
- 1924 Gastrioceras cancellatum var. crencellatum BISAT: 122, Taf. 4, Fig. 6.
- 1924 Gastrioceras listeri.- C. SCHMIDT: 377, Taf. 16, Fig. 1b-e.
  - 1925 Gastrioceras rurae H. SCHMIDT: 593, Taf. 22, Fig. 10.
  - 1925 Gastrioceras Martini H. SCHMIDT: 594, Taf. 22, Fig. 12.
- pt. 1929 Gastrioceras rurae.- H. SCHMIDT: 72, Taf. 19, Fig. 15, 16.
  - 1938 Gastrioceras crenulatum.- DEMANET & VAN STRAELEN: 184, Taf. 136, Fig. 8.
- pt. 1941 Gastrioceras cancellatum - DEMANET: 282, Taf. 18, Fig. 12, 13.
  - 1956 Gastrioceras cancellatum .- NEVILL: 4, Taf. 1, Fig. 1, 2.
  - 1957 Gastrioceras cancellatum.- PATTEISKY: 518, Taf. 1, Fig. 6, 7.
  - 1959 Gastrioceras cancellatum crencellatum.- PATTEISKY: 31, Taf. 11, Fig. 3–25, Taf. 12, Fig. 18–23.
  - 1959 Gastrioceras cancellatum crencellatum f. crenulata PATTEISKY: 32, Taf. 11, Fig. 30.

- ? 1959 Gastrioceras carbonarium var. herbedense PATTEISKY: 35, Taf. 13, Fig. 1–3.
  - 1962 Gastrioceras crencellatum.- RAMSBOTTOM & CALVER: 574, Taf. 14, Fig. 6, 7.
  - 1979 Gastrioceras crenulatum.- OLIVEIRA, HORN & PAPROTH: 160, Taf. 3, Fig. 5.
  - 1995 Cancelloceras (Crencelloceras) soliari Nikolaeva & Kullmann: 373, Abb. 6A, 8.
  - 1997 Cancelloceras crencellatum.- KORN: 85, Taf. 14, Fig. 1-8.

Lectotypus: Exemplar Nr. RE 4330, British Geological Survery, Keyworth (ausgewählt von RAMSBOTTOM & CALVER 1962: 574).

Locus typicus/ Stratum typicum: Royshaw Ziegelei bei Blackburn (Lancashire, Großbritannien); Holcombe Brook Series (G1a-Zone).

#### Material:

Silschede, nördlicher Eisenbahn-Voreinschnitt: 26 Exemplare zwischen 12 und 76 mm Dm (Ruhrland-Museum, Essen);

Zeche Herbede: ein verzerrtes Exemplar (BB.345: coll. PATTEISKY);

Essen-Werden, Zeche Rudolph: ein Exemplar mit 42 mm Dm (BB.450/1; coll. PATTEISKY – Original von *"Gastrioceras rurae"*);

Essen, Petersgrube: ein verdrücktes Exemplar (MB.C.2044);

"Grafschaft Mark": ein kleines Exemplar (MB.C.12839).

**Diagnose:** *Cancelloceras* mit flach pachyconischem Gehäuse (Wb/Dm = 0,60–0,65) und mäßig weitem Nabel (Nw/Dm = 0,35–0,40 bei 20 mm Dm und 0,40–0,45 bei 40 mm Dm). Nabelkante gerundet im Jugend-stadium, ab 30 mm Dm eckig, Gehäuse dann coronat. Ornamentierung bei 30 mm Dm mit länglichen Knoten auf der Nabelkante, gebündelten crenulierten Anwachsstreifen und kräftigen Spiralstreifen. Loben-linie mit breitem Externlobus (EL/H = 0,90; 1,45 des Adventivlobus) und mäßig hohem Mediansattel (0,60 des Ventrolateralsattels).



Abb. 9: *Cancelloceras crencellatum* (BISAT, 1924) von Silschede. A – Exemplar RE.210.A0002/1; x 1. B – Exemplar RE.210.A0002/4; x 1,25. C – Exemplar RE.210.A0301/17; x 1,5. D – Exemplar RE.210.A0301/4; x 2,5.

#### Beschreibung:

**Gehäuse:** Es liegen zwei Querschnitte vor, welche die Entwicklung und Variabilität der Geometrie und der inneren Windungen dokumentieren (Abb. 10F, G). Keines der Exemplare ist perfekt, aber die unterschiedlichen Gehäusestadien können dennoch studiert werden. Exemplar RE.210.A0194/1 hat zwar zerstörte Alterswindungen, zeigt aber ein gut erhaltenes Initialgehäuse (Abb. 10D). Die innersten Windungen bis 5 mm Gehäusedurchmesser sind sehr weit genabelt (Nw/Dm > 0,50) mit nierenförmigem Windungs- guerschnitt.

Exemplar RE.210.A0194/2 zeigt ein mittleres Wachstumsstadium, allerdings ist bei diesem Exemplar die Gehäusewand teilweise aufgelöst (Abb. 10E). Bei 25,5 mm Durchmesser hat das Gehäuse eine dünnpachyconische Gestalt (Wb/Dm = 0,61) mit mäßig weitem Nabel (Nw/Dm = 0,38). Die Nabelkante ist auf der letzten vorhandenen Windung sehr scharf ausgebildet und durch eine Schalenverdickung noch weiter betont; die inneren Windungen zeigen eine gerundete Abgrenzung des Nabels.

Intraspezifische Variabilität ist sowohl bei der Windungsbreite als auch bei der Nabelweite vorhanden, allerdings ist die Streuung nicht besonders weit. Zwischen 20 und 60 mm Durchmesser sind praktisch keine ontogenetischen Veränderungen vorhanden; hier liegt das Verhältnis Windungsbreite/Durchmesser zwischen 0,54 und 0,65 und das Verhältnis Nabelweite/Durchmesser zwischen 0,35 und 0,45.

Die Herausbildung der eckigen Nabelkante zeigt bei verschiedenen Individuen eine deutliche Variabilität. Im Allgemeinen wird sie bei den Formen mit breiterem Windungsquerschnitt früher entwickelt als bei den schmaleren Formen. Exemplar RE.210.A0301/14 beginnt bei etwa 27 mm Dm mit der Verformung der Nabelkante; Exemplar RE.210.A0002/4 ist in diesem Stadium bereits coronat (Abb. 9B).

Bei Exemplar RE.210.A0002/1 mit 50 mm Dm ist die Nabelkante besonders auffällig entwickelt und als deutlicher Nabelkranz abgesetzt (Abb. 9A). Die Nabelwand ist hier geringfügig abgeflacht und steht steil. Beim größten vorliegenden Stück von 75 mm Dm (RE.210.A0069) ist die Nabelkante weniger stark ausgeprägt.

### Abmessungen in mm und Gehäuse-Proportionen:

| -               | Dm   | Wb   | Wh   | Nw   | Mh   | Wh/Dm | Wh/Wh | Nw/Dm | WFR  | I7R  |
|-----------------|------|------|------|------|------|-------|-------|-------|------|------|
| RE.210.A0069    | 75.8 | 44.6 | 26.2 | 32.3 | 14.2 | 0.59  | 1.70  | 0.43  | 1.51 | 0.46 |
| RE.210.A0002/1  | 50,1 | 32,6 | 16,0 | 22,1 | 8,9  | 0,65  | 2,04  | 0,44  | 1,48 | 0,44 |
| RE.210.A0002/4  | 39,2 | 25,7 | 12,4 | 17,3 | 7,8  | 0,66  | 2,07  | 0,44  | 1,56 | 0,37 |
| RE.210.A0301/17 | 30,3 | 16,9 | 10,9 | 12,4 | 6,1  | 0,56  | 1,55  | 0,41  | 1,57 | 0,44 |
| RE.210.A0194/2  | 25,5 | 15,5 | 8,9  | 9,8  | 6,1  | 0,61  | 1,74  | 0,38  | 1,73 | 0,31 |
| RE.210.A0301/3  | 18,6 | 12,7 | 6,9  | 6,8  | 4,0  | 0,68  | 1,84  | 0,37  | 1,62 | 0,42 |
| RE.210.A0068/5  | 17,0 | 9,8  | 6,9  | 6,6  | 3,6  | 0,58  | 1,42  | 0,39  | 1,61 | 0,48 |
| RE.210.A0194/1  | 5,30 | 2,95 | 1,52 | 2,68 | 1,08 | 0,56  | 1,94  | 0,51  | 1,58 | 0,29 |
|                 | 4,25 | 1,94 | 1,12 | 2,12 | 0,84 | 0,46  | 1,73  | 0,50  | 1,55 | 0,25 |
|                 | 3,40 | 1,82 | 0,98 | 1,76 | 0,72 | 0,54  | 1,86  | 0,52  | 1,61 | 0,27 |
|                 | 2,68 | 1,24 | 0,72 | 1,42 | 0,58 | 0,46  | 1,72  | 0,53  | 1,63 | 0,19 |

**Ornament:** Alle Altersstadien zeigen eine ähnliche Schalen-Ornamentierung. In der Jugend (Exemplar RE.210.A0068/5) sind bei 15 mm Dm etwa 35 Nabelrippen pro Umgang ausgebildet, an welchen sich stark gezähnelte Anwachsstreifen bündeln. Weitere Anwachsstreifen mit rectiradiatem, schwach bikonvexem Verlauf entspringen zwischen den Nabelrippen. Zwischen den Anwachstreifen befinden sich Spiralstreifen, deren Stärke den Anwachsstreifen entspricht; der Abstand der Spiralstreifen ist etwa 0,2 mm.

Größere Exemplare zeigen eine Verkürzung der Nabelrippen; bei 25 mm Dm (RE.210.A0301/17) sind nur noch 35 längliche Knoten pro Umgang vorhanden (Abb. 9C). Die Anwachsstreifen haben bei diesem Exemplar bereits eine schwach rursiradiate Richtung (Abb. 10B). Exemplar RE.210.A0002/4 zeigt bei 39 mm Dm 30 recht deutliche Nabelknoten, und bei 50 mm Dm (RE.210.A0002/1) ist die Nabelkante mit wenig mehr als 40 schwachen Knoten besetzt. Dieses große Exemplar zeigt eine sich auf dem letzten Umgang vollziehende Abschwächung der Spiralstreifen, gleichzeitig mit dem Rückgang der Zähnelung der Anwachsstreifen. Bei 50 mm Dm ist eine schwache, ventral am deutlichsten erkennbare Schaleneinschnürung ausgebildet.

Das größte Exemplar (RE.210.A0069) trägt bei 75 mm Dm nur wenige Schalenreste. Der Steinkern hat durch flache breite innere Schalenverdickungen eine wellige Oberfläche; die Nabelknoten sind recht deutlich entwickelt.

**Lobenlinie:** Nicht gesehen bei dem vorliegenden Material. Lobenlinien der Art wurden von KORN (1997; Abb. 65a, b) von Exemplaren aus der Südportugiesischen Zone abgebildet.



Abb. 10: Cancelloceras crencellatum (BISAT, 1924) von Silschede. A – Verlauf der Anwachsstreifen bei Exemplar RE.210.A0301/4, bei 19,4 mm Dm, 12,3 mm Wb, 7,2 mm Wh; x 5. B – Verlauf der Anwachsstreifen bei Exemplar RE.210.A0301/7, bei 30,3 mm Dm, 16,9 mm Wb, 10,9 mm Wh; x 4. C – Verlauf der Anwachsstreifen bei Exemplar RE.210.A0002/8, bei 50,0 mm Dm, 32,5 mm Wb, 16,0 mm Wh; x 3. D – Gehäusequerschnitt von Exemplar RE.210.A0194/1; x 2,5. E – Gehäusequerschnitt von Exemplar RE.210.A0194/2; x 2,5. F, G – biometrische Analyse der Gehäuseontogenese.

**Bemerkungen:** Die Untersuchung des gut erhaltenen Materials hat gezeigt, dass *Cancelloceras* (*Crencelloceras*) *soliari* NIKOLAEVA & KULLMANN, 1995 als jüngeres Synonym von *Cancelloceras crencellatum* (BISAT, 1924) aufgefasst werden muss; unterscheidende Kriterien sind offenbar nicht vorhanden.

**Beziehungen:** *Cancelloceras cancellatum* (BISAT, 1923) ist ähnlich, hat aber ein schmaleres Gehäuse (Wb/Dm = 0,50 bei 30 mm Durchmesser) und zeigt auch in der Jugend kurze, knotenartige Rippchen auf der Nabelkante, wo *C. crencellatum* längliche Rippen besitzt. Ein weiteres Unterscheidungskriterium, auch von anderen Arten der Gattung, ist die coronate Querschnittsform bei *C. crencellatum* über 30 mm Gehäusedurchmesser.

**Stratigraphische und geographische Verbreitung:** Im Ruhrkarbon in den Sprockhöveler Schichten im marinen Hauptflöz 2-Horizont (G1a), zusammen mit *Agastrioceras carinatum* (FRECH, 1899). Die Art ist bekannt aus dem Rheinischen Schiefergebirge, Belgien, Nordengland (Lancashire, Yorkshire), Irland und Südwest-Portugal.



Abb. 11: Cancelloceras demaneti (PATTEISKY, 1965), Exemplar BB.o.Nr. von Herbede; x 1.

Cancelloceras demaneti (PATTEISKY 1959) Abb. 11, 12

- 1938 Gastrioceras rurae.- H. SCHMIDT in KUKUK: 119, Abb. 105.
- 1959 Gastrioceras demaneti PATTEISKY: 34, Taf. 12, Fig. 11-13, Taf. 13, Fig. 15-21.

**Holotypus:** Exemplar BB.749; abgebildet von PATTEISKY (1959: pl.13 fig.19). Es konnte in der Sammlung des Ruhrland-Museums Bochum bisher nicht aufgefunden werden.

Locus typicus/ Stratum typicum: Unna, Zeche Alter Hellweg; Mariner Schieferbank-Horizont (G1b). Material:

Herbede, Zeche Lothringen: zwei große einseitig erhaltene Exemplare von 78 mm (BB.963; coll. WENGER) und 100 mm Dm (BB, o.Nr.) aus sideritischen Knollen.

**Diagnose:** *Cancelloceras* mit scheibenförmigem Gehäuse (Wb/Dm = 0,45–0,50) und mäßig weitem Nabel (Nw/Dm = 0,40–0,45) bei 80–100 mm Durchmesser. Nabelkante in diesem Stadium kranzartig herausgehoben, Windungsquerschnitt trapezoidal mit abgeflachten, deutlich konvergierenden Flanken und flach dachförmiger Externseite. Ornamentierung mit Knoten auf der Nabelkante und gebündelten, crenulierten Anwachsstreifen mit schwach bikonvexem, rursiradiatem Verlauf. Lobenlinie mit parallelwandigem Externlobus und breit gerundeten Ventrolateralsattel.

# Beschreibung:

**Gehäuse:** Der Umriss des größten Exemplars (BB o. Nr.; Abb. 12C) zeigt bei 100 mm Durchmesser ein scheibenförmiges Gehäuse (Wb/Dm = 0,49) mit recht weitem Nabel (Nw/Dm = 0,42). Das Exemplar zeigt eine Verwandlung des Windungsquerschnittes auf der letzten Windung: Zu Beginn sind Flanken und Externseite fast gleichmäßig breit gerundet, aber es setzt eine rasch zunehmende Abflachung der Flanken ein, die deutlich zu der durch eine gerundete Kante abgesetzte Externseite konvergieren. Die Nabelkante wird dadurch betont und hebt sich kranzartig heraus. Die Mündung ist niedrig (Windungsexpansionsrate = 1,72).



Abb. 12: *Cancelloceras demaneti* (PATTEISKY, 1965), Exemplar BB.o.Nr. von Herbede. Verlauf der Anwachsstreifen bei 80,5 mm Dm, 30,6 mm Wh; x 2. B – Lobenlinie, bei 34,0 mm Wb, 20,6 mm Wh; x 2. C – Dorsalansicht, x 1.

### Abmessungen in mm und Gehäuse-Proportionen:

|           | <u> </u> |       |      |      |      |      |       |       |       |      |      |
|-----------|----------|-------|------|------|------|------|-------|-------|-------|------|------|
|           |          | Dm    | Wb   | Wh   | Nw   | Mh   | Wb/Dm | Wb/Wh | Nw/Dm | WER  | IZR  |
| BB o. Nr. |          | 100,8 | 49,0 | 35,0 | 42,0 | 24,0 | 0,49  | 1,40  | 0,42  | 1,72 | 0,31 |
| BB.963    |          | 78,0  | 38,0 | 29,8 | 31,5 | 18,0 | 0,49  | 1,28  | 0,40  | 1,69 | 0,40 |

**Ornament:** Exemplar BB.963 zeigt bis zu einem Durchmesser von 60 mm etwa 12 abgerundete Nabelknoten auf einem halben Umgang. Bei größerem Durchmesser besteht das Ornament dann nur noch aus Transversal- und Spiralstreifen.

Das größere Exemplar (BB ohne Katalognummer) zeigt bei 70 mm Dm kräftige Anwachsstreifen mit schwach bikonvexem Verlauf, bei dem der Externsinus das bedeutende Element ist (Abb. 12A). Auf der Externseite stehen die Anwachsstreifen in etwas variablen Abständen von 0,4 bis 0,6 mm und sind deutlich crenuliert. Zusammen mit den Spiralstreifen bilden sie hier ein Netzornament. Am Windungsende, bei 100 mm Dm, ist keine Spiralstreifung mehr erkennbar; hier trägt die Externseite scharfe Anwachsstreifen, die hier erheblich kräftiger ausgebildet sind als auf den Flanken.

**Lobenlinie:** Teilbereiche der Lobenlinie zeigen einen für Gastrioceraten charakteristischen Verlauf (Abb. 12B). Der Externlobus des großen Exemplars von Herbede hat fast parallel stehende Flanken; die beiden Sekundärloben sind lanzettförmig und schwach ausgebaucht. Der Mediansattel überragt die halbe Höhe des Externlobus und der Ventrolateralsattel ist breit gerundet.

**Bemerkungen:** Es ist möglich, dass *C. demaneti* lediglich die Altersform einer bereits bekannten Art von *Cancelloceras* ist. Das Problem kann erst durch das Auffinden von kleineren Topotypen oder weiterem körperlich erhaltenem Material von Herbede geklärt werden.

**Beziehungen:** *C. demaneti* unterscheidet sich von *C. crencellatum*, das ebenfalls rursiradiate, schwach bikonvex verlaufende Anwachsstreifen besitzt, durch das Herausheben der Nabelkante im Altersstadium und durch den trapezförmigen Windungsquerschnitt.

Stratigraphische und geographische Verbreitung: Mariner Schieferbank-Horizont (G1b); bisher nur aus dem Ruhrgebiet bekannt.

Typus-Art: Ammonites Listeri J. SOWERBY, 1812.

#### Gastrioceras listeri (SOWERBY, 1812)

Abb. 13, 14

| 1809 | Conchyliolithes N. Ammonites (listeri) MARTIN: Taf. 35, Fig. 3. |
|------|-----------------------------------------------------------------|
| 1812 | Ammonites Listeri J. SOWERBY: 97.                               |
|      |                                                                 |

- 1825 Ammonites Listeri.– J. de C. Sowerby: 163, Taf. 501, Fig. 1, 2.
- 1832 Ammonites Listeri.- VON BUCH: 175.
- 1836 Goniatites Listeri.- PHILLIPS: 235, Taf. 20, Fig. 1.
- non 1837 Goniatites Listeri.- BEYRICH: 39, Taf. 2, Fig. 6.
- 1844 Ammonites listeri.- DE KONINCK: 577, Taf. 51, Fig. 4a, b.
- 1850 Goniatites Listeri.- SANDBERGER & SANDBERGER: 56, Abb. 1.
- non 1863 Goniatites Listeri.- ROEMER: 580, Taf. 15, Fig. 2 (= Agastrioceras subcrenatum FRECH, 1899).
- (?) 1863 Goniatites Listeri.- Ludwig: 284, Taf. 48, Fig. 2.
- 1884 Ammonites Listeri.- BEYRICH: 213.
  - 1897 Gastrioceras Listeri.- FOORD & CRICK: 233, Abb. 111.
- (?) 1897 Gastrioceras coronatum Foord & CRICK: 23, Abb. 112.
- 1898 Gastrioceras listeri.– Haug: 103, Taf. 1, Fig. 28–31.
- 1899 Glyphioceras Listeri.- FRECH: 330.
- non 1899 Glyphioceras Listeri.- FRECH: Taf. 46, Fig. 10a, Taf. 46b, Fig. 2a, b.
- non 1903 Gastrioceras listeri.- SMITH: 93, Taf. 13, Fig. 6-15 [= Lissogastrioceras fittsi (MILLER & OWEN, 1944)].
  - 1914 Gastrioceras Listeri.- WEDEKIND: 15, Abb. 5a.
    - 1914 Gastrioceras Kahrsi WEDEKIND: 18, Taf. 1,, Fig. 7,8.
    - 1918 Gastrioceras Listeri.- WEDEKIND: 159, Abb. 53a.
    - 1918 Gastrioceras listeri.- HIND: 445.
- non 1924 Gastrioceras Listeri.- C. SCHMIDT: 377, Taf. 16, Fig. 1b-e.
  - 1924 Gastrioceras Kahrsi.- С. Schmidt: 381, Taf. 17, Fig. 3a, b.
    - 1924 Gastrioceras listeri.– BISAT: 119.
- pt. 1925 Gastrioceras Listeri.- Н. SCHMIDT: 595, Taf. 22, Fig. 13 (non Taf. 26, Fig. 11).
  - 1929 Gastrioceras Listeri.– Н. Schmidt: 73, Taf. 19, Fig. 21, 22.
  - 1931 Gastrioceras listeri.- DELÉPINE in DE DORLODOT & DELÉPINE: 72, Fig. 3.
  - 1939 Gastrioceras listeri.- LIBROVITCH: Taf. 34, Fig. 2.
  - 1939 Gastrioceras listeri.- SCHINDEWOLF: 55, Abb. 2,2, Taf. 4, Fig. 5, 6.
  - 1941 Gastrioceras listeri.- DELÉPINE: 90, Abb. 19B.
- non 1943 Gastrioceras listeri.- DEMANET: 136, Taf. 8, Fig. 14-16, Taf. 9, Fig. 1-6.
  - 1945 Gastrioceras listeri.- DORSMAN: 72, Taf. 10, Fig. 6.
  - 1951 Gastrioceras listeri.- STUBBLEFIELD: 121, Taf. 7, Fig. 2a-c, 3a-d.
  - 1956 Gastrioceras listeri.- NEVILL: 8, Taf. 1, Fig. 12.
  - 1962 Gastrioceras listeri.- RAMSBOTTOM & CALVER: 575, Taf. 15, Fig. 9,10.
  - 1964 Gastrioceras listeri.– PATTEISKY: 651, Taf. 1, Fig. 1.
- ? 1964 Gastrioceras Gruppe listeri.- PATTEISKY: 651, Taf. 1, Fig. 2, 3.
- 1965 Gastrioceras listeri.– PATTEISKY: 17, Taf. 5, Fig. 12–17.
- ? 1965 Gastrioceras Gruppe listeri.- PATTEISKY: 17, Taf. 6, Fig. 7, 8.
  - 1965 Gastrioceras weristerense.- PATTEISKY: 22, Taf. 8, Fig. 11–16, Taf. 9, Fig. 1–10.
  - 1966 Gastrioceras listeri.– Раттеляку in Dahm: 111, Taf. 4, Fig. 3.
  - 1979 Gastrioceras listeri.- POPOV: 85, Taf. 11, Fig. 4-6.
  - 1979 Gastrioceras listeri.- Волкоwsкı: 40, Taf. 9, Fig. 4, 5.
- ? 1983 Gastrioceras listeri.- GAO: 473, Taf. 155, Fig. 1.
- 1985 Gastrioceras listeri.- House: 130, Taf. 6.7.42, Abb. 6.7.18C.
- ? 1987 Gastrioceras listeri.- RUAN & ZHOU: 141, Taf. 12, Fig. 4, Taf. 14, Fig. 4, Taf. 15, Fig. 6.
  - 1997 Gastrioceras listeri.- KORN: 87, Taf. 15, Fig. 1-6 (hier weitere Synonymie).

**Lectotypus:** Exemplar 43909b in der Sammlung des British Museum (Natural History), designiert durch STUBBLEFIELD (1951).

Locus typicus/ Stratum typicum: Bradford Road 2,5 Meilen nördlich von Halifax (Yorkshire, England); basale G2-Stufe (basales Westfalium).

# Material:

Essen-Kupferdreh, Stbr. Adler: zwei kleine, gut erhaltene Exemplare von 6 und 9 mm Dm (BB.P228.WB, BB.P229.WB; coll. Schönwälder);

Essen-Kupferdreh, Stbr. Adler: ein sehr gut erhaltenes Exemplar mit Schale (BB.P92a.WB); Essen-Kupferdreh, Stbr. Adler: drei Exemplare (BB.P218.WB, BB.P15.WB, BB.P20.WB; coll. PATTEISKY); Essen-Hügel, Park der Villa Hügel (Flöz Finefrau Nebenbank): sechs fragliche Hohlform-Exemplare (darunter RE.220.A0631/9, RE.220.A0631/5, RE.220.A0631/4);

Rheinhausen, Zeche Diergardt, Schacht Rumelin: Gipsabguss BB.P39.WB (coll. SCHAUB).



Abb. 13: *Gastrioceras listeri* (SowERBY, 1812). A – Exemplar BB.P92a.WB von Essen-Kupferdreh; x 2,5. B – Abguss BB.P39 von Rheinhausen; x 1,5. C – Abguss BB.P218.WB von Essen-Kupferdreh; x 1,5. D – Abguss des fraglichen Exemplars RE.220.A0631/9 von Essen-Hügel; x 1,25. E – Exemplar BB.P229.WB von Essen-Kupferdreh; x 4,5. F – Exemplar BB.P228.WB von Essen-Kupferdreh; x 5.



Abb. 14: Gastrioceras listeri (SowERBY, 1812) von Essen-Kupferdreh. A – Verlauf der Anwachsstreifen bei Exemplar BB.P229.WB, bei 9,1 mm Dm, 6,7 mm Wb, 2,6 mm Wh; x 10. B – Verlauf der Anwachsstreifen bei Exemplar BB.P92a.WB, bei 26,5 mm Dm, 18,4 mm Wb, 8,0 mm Wh; x 5. C – Gehäusequerschnitt von Exemplar BB.P218.WB; x 2,5. D, E – biometrische Analyse der Gehäuseontogenese.

**Diagnose:** *Gastrioceras* mit dickpachyconischem Gehäuse bei 15 mm Dm (Wb/Dm = 0,70–0,80) und dünnpachyconischem Gehäuse bei 30 mm (Wb/Dm = 0,65–0,70). Weiter Nabel (Nw/Dm = 0,45 zwischen 10 und 30 mm Dm). Nabelkante in allen Stadien deutlich kranzartig herausgehoben. Ornamentierung mit 25 kurzen, länglichen und zugespitzten Knoten auf der Nabelkante, kräftigen prorsiradiaten Anwachsstreifen ohne oder mit undeutlichem Externsinus. Feine Spiralstreifen zwischen den Nabelknoten. Lobenlinie mit mäßig weitem, Y-förmigen Externlobus und mäßig hohem Mediansattel.

#### Beschreibung:

**Gehäuse:** In allen Größenstadien hat das Gehäuse eine ähnliche Form mit weitem Nabel, deutlich eckiger Nabelkante, steiler Nabelwand und breiter Externseite. Dies zeigt das geschnittene Exemplar BB.P218.WB von Essen-Kupferdreh, welches die Entwicklung der Gehäusegeometrie zwischen 8 und 29 mm Durchmesser zeigt (Abb. 14C). Die 3? erhaltenen Windungen zeigen einen sehr ähnlichen Querschnitt mit diagonal stehender Nabelwand, betonter Nabelkante und einer sehr breiten Externseite. Das Verhältnis Windungsbreite/Gehäusedurchmesser beträgt stets etwa 0,70 und der Nabel hat immer eine Weite von etwa 0,45 des Gehäusedurchmessers (Abb. 14D, E).

Das am besten erhaltene Exemplar BB.P92a.WB von Essen-Hügel zeigt bei 26,5 mm Durchmesser eine zum Querschnittsexemplar passende Morphologie (Abb. 13A). Es ist pachyconisch (Wb/Dm = 0,69) mit sehr breiter, gleichmäßig gerundeter Externseite; sein Nabel ist weit (Nw/Dm = 0,45) und von einer scharfen Kante begrenzt. Die Nabelwand steht steil.

#### Abmessungen in mm und Gehäuse-Proportionen:

| -          |       |       |      | •     |      |       |       |       |      |      |
|------------|-------|-------|------|-------|------|-------|-------|-------|------|------|
|            | Dm    | Wb    | Wh   | Nw    | Mh   | Wb/Dm | Wb/Wh | Nw/Dm | WER  | IZR  |
| BB.P92a.WB | 26,5  | 18,4  | 8,0  | 11,9  | 5,9  | 0,69  | 2,30  | 0,45  | 1,65 | 0,26 |
| BB.P229.WB | 9,1   | 6,7   | 2,6  | 4,4   | -    | 0,74  | 2,58  | 0,48  | -    | -    |
| BB.P218.WB | 28,95 | 19,02 | 9,46 | 12,39 | 6,50 | 0,66  | 2,01  | 0,43  | 1,66 | 0,31 |
|            | 22,46 | 15,89 | 7,11 | 9,55  | 4,79 | 0,71  | 2,23  | 0,43  | 1,61 | 0,33 |
|            | 17,67 | 12,55 | 5,80 | 7,71  | 4,08 | 0,71  | 2,16  | 0,44  | 1,69 | 0,30 |
|            | 13,59 | 9,74  | 4,16 | 6,15  | 2,81 | 0,72  | 2,34  | 0,45  | 1,59 | 0,32 |
|            | 10,78 | 7,42  | 3,28 | 4,99  | 2,35 | 0,69  | 2,26  | 0,46  | 1,64 | 0,28 |
|            | 8,43  | 5,78  | 2,51 | 3,95  | -    | 0,69  | 2,30  | 0,47  | -    | -    |
|            |       |       |      |       |      |       |       |       |      |      |

**Ornament:** Bei 6 mm Dm (P228.WB; Abb. 13F) ist die Nabelkante von 18 scharfen, konkav gebogenen Knoten besetzt. Auf der breiten Externseite dünnen die Knoten rasch aus, spalten sich in zwei kräftige Anwachssteifen und verlaufen mit deutlichem Vorsprung über die Mitte der Externseite. Zwischen den Knoten entspringt jeweils ein weiterer Anwachsstreifen.

Das etwas größere Exemplar BB.P229.WB hat bei 9 mm Dm 22 unterschiedlich kräftige Nabelknoten. Die daraus entspringenden Anwachsstreifen sind recht kräftig und zeigen einen hohen Ventralvorsprung (Abb. 14A). Dort haben sie Abstände von 0,2 bis 0,8 mm zueinander (ABB. 13E).

Das schöne Exemplar BB.P92a.WB ist fast voll beschalt (Abb. 13A). Bei 28 mm Dm hat es 28 dornenartige Nabelknoten, von welchen scharfe, rippchenartige Anwachsstreifen mit konkav-konvexem Verlauf ausgehen (Abb. 14B). Sie stehen auf der Externseite in Abständen von ungefähr einem Millimeter, können aber auch dichter gedrängt sein. Zwischen diesen groben Streifen befinden sich noch jeweils 10 bis 20 extrem feine Anwachslinien, welche im Bereich des Nabels und besonders auf und zwischen den Knoten stark crenuliert sind und Spiralstreifung erzeugen. Die Schale trägt ferner schwache Einschnürungen in Abständen von etwa 100°; diese sind auf der gewellten Oberfläche des Steinkerns deutlicher.

Bei 47 mm Dm (BB.P39.WB) sind 26 von Spiralstreifen besetzte Nabelknoten vorhanden.

**Lobenlinie:** Nicht gesehen am vorliegenden Material. Eine Lobenlinie der Art wurde von KORN (1997; Abb. 66b) von einem Exemplar aus der Südportugiesischen Zone abgebildet.

**Bemerkungen:** PATTEISKY 's (1965) Aufteilung des Materials von Essen-Kupferdreh in die Arten *G. listeri* und *G. weristerense* kann nicht nachvollzogen werden. Die von ihm zur letzteren Art gestellten Exemplare unterscheiden sich offenbar nicht von *G. listeri*.

Es ist nicht sicher, ob die außereuropäischen Meldungen von *Gastrioceras listeri* tatsächlich dieselbe Art betreffen. GAO (1983) bildet ein als *G. listeri* bestimmtes Exemplar mit 48 mm Gehäusedurchmesser ab, welches allerdings eine höher gewölbte Externseite besitzt als die europäischen Exemplare.

RUAN & ZHOU (1987) beschreiben zumeist kleine Exemplare bis 20 mm Durchmesser von Ningxia, welche engnabeliger sind (Nw/Dm = 0,36–0,44 bei 10 mm Dm) als die europäischen Funde.

**Beziehungen:** *Gastrioceras listeri* unterscheidet sich durch das coronate Gehäuse mit dem weiten Nabel, den kräftigen Nabelrippen und den kräftigen Anwachsstreifen von den anderen *Gastrioceras*-Arten, zum Beispiel *Gastrioceras carbonarium* (von Buch, 1832) des Ruhrkarbons.

**Stratigraphische und geographische Verbreitung:** Im Ruhrkarbon kommt die Art in den marinen Bändern 1 und 3 des Flözes Finefrau Nebenbank von (basales Westfalium; G2a). Die Art hat eine weite Verbreitung von Südportugal bis nach Polen; eine weitere Verbreitung ist nicht sicher.

### Gastrioceras carbonarium (VON BUCH, 1832)

Abb. 15, 16

- \*pt 1832 Ammonites carbonarius VON BUCH: 176, Taf. 2, Fig. 9<sup>IIII</sup>.
- 1884 Ammonites carbonarius.- BEYRICH: 213.
- pt 1897 Gastrioceras carbonarium.- FOORD & CRICK: 229, Abb. 110c (?).
- 1899 Glyphioceras subcrenatum.– FRECH, Taf. 46b, Fig. 5с.
- non 1903 Gastrioceras carbonarium. SMITH: 84, Taf. 11, Fig. 1–4 [= Lissogastrioceras adaense (MILLER & OWEN, 1944)].
  - 1905 Gastrioceras carbonarium.- HIND: 539, Taf. 36, Fig. 1.
  - 1914 Gastrioceras carbonarium.- WEDEKIND: 16, Taf. 1, Fig. 1, 2, 9, Abb. 5a.
  - 1914 Gastrioceras Kahrsi WEDEKIND: 18, Taf. 1, Fig. 7, 8.
  - 1918 Gastrioceras carbonarium.- WEDEKIND: 159, Abb. 53b, Taf. 17, Fig. 11.
  - 1918 Gastrioceras carbonarium.- HIND: 445.
- pt. 1924 Gastrioceras Listeri.- C. SCHMIDT: 377, Taf. 16, Fig. 1a.

- pt. 1925 Gastrioceras Listeri.- H. SCHMIDT: 595, Taf. 26, Fig. 11.
  - 1931 Gastrioceras subcrenatum.- DELÉPINE in DE DORLODOT & DELÉPINE: 74, Taf. 4, Fig. 4-6, Abb. 4.
    - 1938 Gastrioceras listeri.- DEMANET: 184, Abb. 60.
- pt. 1943 Gastrioceras listeri.- DEMANET: 136, Taf. 9, Fig. 3-6.
  - 1959 Gastrioceras carbonarium.- PATTEISKY: 34.
  - 1964 Gastrioceras carbonarium carbonarium.- PATTEISKY: 649, Taf. 1, Fig. 7-9.
  - 1965 Gastrioceras carbonarium carbonarium.- PATTEISKY: 19, Taf. 7, Fig. 1-3, 6.
  - 1966 *Gastrioceras carbonarium carbonarium.* Böger: Taf. 2, Fig. 1,2.

**Lectotypus:** MB.C.2043 (coll. SCHLOTHEIM); hier designiert und abgebildet in Abb. 15A. Es ist möglicherweise das bei von Buch (1832, Taf. 2, Fig. 9<sup>IIII</sup>) abgebildete Exemplar (Abb. 15B).

Locus typicus/ Stratum typicum: Essen-Werden, Grube Hoffnung; basale G2 Stufe.

# Material:

- Essen-Werden, Grube Hoffnung: ein korrodiertes und daher schalenloses Exemplar (Lectotypus MB.C.2043; coll. SCHLOTHEIM);
- Essen-Werden, Grube Hoffnung: zwei kleine Exemplare (MB.C.5623.1, 5623.2; coll. von Buch);
- Essen-Werden, Zeche Kalksiepen: ein Gipsabguss eines Exemplars von fast 60 mm Dm (BB.P.221.WB; coll. Patteisky);

Essen-Rellinghausen, Zeche Langenbrahm: ein gut erhaltenes Exemplar mit 45 mm Dm (RE.220.A0266); Essen, Zeche Langenbrahm (Sarnsbank 2-Horizont): ein sehr großes fragliches Exemplar (RE.220.A0799); Essen-Kray, Zeche Katharina: 1 großes Exemplar (RE.220.A0002);



Abb. 15: *Gastrioceras carbonarium* (von Buch, 1832). A – Lectotypus MB.C.2043 von Essen-Werden; x 1,5. B – Reproduktion des von L. von Buch (1832, Taf. 2, Fig. 9<sup>IIII</sup>) abgebildeten Exemplars; x 1. C – Exemplar MB.C.5623.1 von Essen-Werden; x 2. D – Exemplar RE.220.A0266 von Essen-Rellinghausen; x 1,25

С

D

Wattenscheid, Zeche Fröhliche Morgensonne: ein Hohlform-Exemplar mit 35 mm Dm (BB.11/13.WB; coll. PATTEISKY) und eine Nabelfüllung vom gleichen Fundpunkt;

Mülheim an der Ruhr, Zeche Humboldt (Flöz Sarnsbank): ein Exemplar von 68 mm Dm (BB ohne Nummer; coll. G. SCHMIDT);

Recklinghausen, Grube König Ludwig (über Flöz Sarnsbank): ein flachgedrücktes Exemplar (MB.C.12846; leg. Hugo PAUL 1917).

**Diagnose:** *Gastrioceras* mit pachyconischem Gehäuse (Wb/Dm = 0,65–0,70 bei 15 mm Dm; Wb/Dm = 0,60–0,65 bei 30 mm und 45 mm Dm) und mäßig weitem Nabel (Nw/Dm = 0,35 bei 20 mm Dm und 0,40 über 30 mm Dm). Nabelkante in der Jugend gerundet und später schwach kantig, Gehäuse mit breit gerundeter Externseite. Ornamentierung mit 20 kurzen, abgerundeten Knoten auf der Nabelkante und feinen rursiradiaten Anwachsstreifen mit tiefem Externsinus. Keine Spiralstreifen.

#### Beschreibung:

**Gehäuse:** Der Lectotypus MB.C.2043 aus der SCHLOTHEIM'schen Sammlung ist ein korrodiertes Exemplar mit 43 mm Durchmesser (Abb. 15A). Es zeigt ein dünnpachyconisches Gehäuse (Wb/Dm = 0,61) mit einem recht weiten, sich treppenförmig öffnenden Nabel (Nw/Dm = 0,38), Die Nabelwand steht steil und ist abgeplattet; sie wird durch eine deutliche Kante gegen die breit gerundeten Flanken abgegrenzt.

Exemplar RE.220.A0266 (Abb. 15C) von der Zeche Langenbrahm ist besser erhalten. Es hat 45 mm Durchmesser und ist etwas dicker als der Lectotypus (Wb/Dm = 0,64) mit einem etwas weiteren Nabel (Nw/Dm = 0,42). Auch bei diesem Exemplar steht die Nabelwand steil und ist mit einer Kante von den Flanken getrennt. Die Mündung ist niedrig (Windungsexpansionsrate 1,65).

Das kleinere Exemplar MB.C.5623.1 von Essen-Werden (24 mm Dm) ist pachyconisch (Wb/Dm = 0,65) mit engerem Nabel (Nw/Dm = 0,28). Es zeigt den Übergang von der gerundeten Nabelkante zum Beginn einer schwach kantigen Abgrenzung des Nabels (Abb. 15C).

# Abmessungen in mm und Gehäuse-Proportionen:

| 0            |       |      |      |      |      |       |       |       |      |      |
|--------------|-------|------|------|------|------|-------|-------|-------|------|------|
|              | Dm    | Wb   | Wh   | Nw   | Mh   | Wb/Dm | Wb/Wh | Nw/Dm | WER  | IZR  |
| RE.220.A0799 | 131,0 | 73,0 | 43,0 | 61,0 | -    | 0,56  | 1,70  | 0,47  | -    | -    |
| BB o.Nr.     | 68,2  | 40,4 | 24,6 | 27,4 | 16,5 | 0,59  | 1,64  | 0,40  | 1,74 | 0,33 |
| RE.220.A0002 | 62,6  | 39,7 | 22,9 | 26,6 | -    | 0,63  | 1,73  | 0,42  | -    | -    |



Abb. 16: *Gastrioceras carbonarium* (von Buch, 1832). A – Verlauf der Anwachsstreifen bei Exemplar RE.220.A0266 von Essen-Rellinghausen, bei 32,0 mm Dm, 27,0 mm Wb, 11,0 mm Wh; x 4. B – Verlauf der Anwachsstreifen bei einem Exemplar ohne Nummer im Bergbau-Museum Bochum, bei 68,0 mm Dm, 40,4 mm Wb, 24,5 mm Wh; x 2,5. C, D – biometrische Analyse der Gehäuseontogenese.

| BB.P221.WB   | 59,5 | 36   | 20,2 | 25,4 | -    | 0,61 | 1,78 | 0,43 | -    | -    |
|--------------|------|------|------|------|------|------|------|------|------|------|
| RE.220.A0266 | 45,0 | 28,6 | 16,2 | 18,8 | 10,0 | 0,64 | 1,77 | 0,42 | 1,65 | 0,38 |
| MB.C.2043    | 42,8 | 26,3 | 15,8 | 16,2 | 9,8  | 0,61 | 1,66 | 0,38 | 1,68 | 0,38 |
| BB.P11/13.WB | 33,2 | 21,6 | 11,1 | 13,6 | -    | 0,65 | 1,95 | 0,41 | -    | -    |
| MB.C.5623.1  | 24,2 | 15,6 | 9,8  | 7,1  | 5,5  | 0,65 | 1,59 | 0,29 | 1,67 | 0,44 |
|              |      |      |      |      |      |      |      |      |      |      |

**Ornament:** Das Hohlform-Exemplar BB.P11/13.WB zeigt bei 36 mm Dm etwa 22 geringfügig elongate Nabelknoten; weitere Ornament-Details sind nicht erhalten. Der große Gipsabguss zeigt bei 60 mm Dm 10 gerundete Nabelknoten auf 1/2 Umgang. Das größte Exemplar (BB o.Nr.) zeigt bei 68 mm Dm feine, etwas raue und in unregelmäßigen Abständen angeordnete Anwachsstreifen mit schwach bikonvexem Verlauf; der Breite und tiefe Externsinus ist das bedeutendste Element des Mundrandes (Abb. 16B). Nabelknoten sind wegen der ungünstigen Erhaltung nur undeutlich zu erkennen.

Das sehr große Exemplar RE.220.A0799 (131 mm Dm) zeigt Nabelknoten pro halbem Umgang bis etwa 100 mm Gehäusedurchmesser; danach ist die Nabelkante glatt. Feine Anwachsstreifen verlaufen mit breitem, tiefem Sinus über die Externseite.

Exemplar MB.C.5623.1 ist korrodiert und zeigt daher nur wenige Details der Ornamentierung (Abb. 15C). Neben den Nabelrippchen sind aber schwache Schaleneinschnürungen zu erkennen, welche auf der Flanke etwa geradlinig verlaufen und zu einer seichten Externbucht zurück biegen.

**Bemerkungen:** In seiner Monographie über die Goniatiten des Ruhrkarbons stellte PATTEISKY (1964, 1965) nicht die Frage nach einem Typus-Exemplar von *Gastrioceras carbonarium*. Offensichtlich gehören nicht alle von PATTEISKY (1965) auf Tafel 7 abgebildeten Exemplare zu *G. carbonarium*; zumindest der in Figur 4 dargestellte Gehäusequerschnitt dürfte zu *G. angustum* gehören.

**Beziehungen:** *Gastrioceras carbonarium* ist von der ebenfalls im Ruhrkarbon vorkommenden Art *G. listeri* durch die erheblich weniger betonte Nabelkante, die weniger stark ausgeprägten Nabelknoten und die feineren Anwachsstreifen unterschieden. Von *G. angustum* PATTEISKY, 1964 und *G. subcrenatum* (FRECH, 1899) unterscheidet sich *G. carbonarium* durch das breitere Gehäuse, den weiteren Nabel und die deutlich stärkeren Nabelknoten.

**Stratigraphische und geographische Verbreitung:** *Gastrioceras carbonarium* kommt im Ruhrkarbon im unteren marinen Horizont über Flöz Sarnsbank 2 vor (unterste G2-Stufe; basales Westfalium); die Art ist verbreitet in Mitteleuropa (Rheinisches Schiefergebirge, Belgien) und Nordengland.

*Gastrioceras angustum* PATTEISKY, 1964 Abb. 17, 18

1964 *Gastrioceras carbonarium angustum* PATTEISKY: 650, Taf. 1, Fig. 10–13, 15.

- 1965 Gastrioceras carbonarium angustum.- PATTEISKY: 20, Taf. 7, Fig. 12–15, Taf. 8, Fig. 1–3.
- 1965 Gastrioceras carbonarium carbonarium.- PATTEISKY: 19, Taf. 7, Fig. 4.
- 1997 Gastrioceras angustum.- KORN: 89, Taf. 15, Fig. 7.

Holotypus: Exemplar BB.P223.WB; hier abgebildet in Abb. 17B.



Abb. 17: *Gastrioceras angustum* PATTEISKY, 1964. A – Exemplar MB.C.8006 von Essen-Werden; x 1,5. B – Holotypus BB.P223 von Buchum-Stiepel; x 2,5.

Locus typicus/ Stratum typicum: Bochum-Stiepel, Kleinzeche Pleßbach; mariner Horizont über Flöz Sarnsbank 2 (basale G2 Stufe).

# Material:

Hammertal bei Bochum-Stiepel, Kleinzeche Pleßbach; der Holotypus mit etwa 10 mm Durchmesser (BB.P223.WB; coll. Böger);

Essen-Werden: ein Exemplar mit 32 mm Dm (MB.C.8006; vermutlich coll. von Buch);

Essen-Werden, Grube Hoffnung: sechs kleine fragliche Exemplare mit maximal etwa 12 mm Dm (MB.C.2040.1, MB.C.2040.2, MB.C.12837.1–MB.C.12837.4; coll. SCHLOTHEIM);

Essen-Werden, Grube Hoffnung: ein kleines fragliches Exemplar mit etwa 15 mm Dm (MB.C.2038; coll. von BUCH);

Essen-Rellinghausen, Zeche Langenbrahm: Querschnitt eines Exemplars mit 22 mm Dm (RE.220A0393/1). **Diagnose:** *Gastrioceras* mit dünnpachyconischem Gehäuse bei 15 mm Dm (Wb/Dm = 0,65–0,70) und dickscheibenförmigem Gehäuse bei 30 mm (Wb/Dm = 0,55–0,60). Nabel mäßig weit (Nw/Dm = 0,30 zwisschen 10 und 30 mm Dm). Nabelkante in der Jugend gerundet, ab etwa 20 mm Gehäusedurchmesser bildet sich eine deutliche Nabelkante. Ornamentierung mit 30 kurzen, abgerundeten Rippen auf der Nabelkante und kräftigen bikonvexen Anwachsstreifen mit tiefem Externsinus. Feine Spiralstreifen und gezähnelte Anwachstreifen im Nabelbereich.

# Beschreibung:

**Gehäuse:** Der Querschnitt von Exemplar RE.220.A0393/1 erlaubt das Studium der Windungen bis zu 22 mm Gehäusedurchmesser (Abb. 18A). Es sind nur unauffällige ontogenetische Veränderungen zu verzeichnen; das Gehäuse wird zwischen 2 und 10 mm Dm kontinuierlich dicker (Wb/Dm steigt von 0,55 auf 0,73) und danach wieder schmaler (Wb/Dm = 0,65 bei 22 mm Dm). Der Nabel ist bei 2 mm Dm am weitesten (Nw/Dm = 0,48) und nimmt danach auf einen Wert von 0,33 ab (Abb. 18C, D). Eine deutliche Nabelkante ist bei diesem Exemplar noch nicht zu erkennen.

MB.C.8006 von Werden ist das größte vorliegende Exemplar mit 32 mm Gehäusedurchmesser (Abb. 17A). Es ist dickscheibenförmig (Wb/Dm = 0,58) mit mäßig weitem Nabel (Nw/Dm = 0,35). Die abgeflachte Nabelwand steht steil und wird durch eine recht scharfe Kante von der breit gerundeten Flanke getrennt. Die Externseite ist ebenfalls breit gerundet

# Abmessungen in mm und Gehäuse-Proportionen:



Abb. 18: *Gastrioceras angustum* PATTEISKY, 1964. A – Gehäusequerschnitt von Exemplar RE.220.A0393/1 von Essen-Rellinghausen; x 2,5 B – Lobenlinie vom Holotypus BB.P223 von Bochum-Stiepel, bei 7,2 mm Wb, 4,3 mm Wh; x 8. C, D – biometrische Analyse der Gehäuseontogenese.

|                | Dm    | Wb    | Wh   | Nw   | Mh   | Wb/Dm | Wb/Wh | Nw/Dm | WER  | IZR  |
|----------------|-------|-------|------|------|------|-------|-------|-------|------|------|
| MB.C.8006      | 32,4  | 18,8  | 12,7 | 11,4 | -    | 0,58  | 1,48  | 0,35  | -    | -    |
| RE.220.A0393/1 | 21,96 | 14,24 | 8,37 | 7,30 | 5,37 | 0,65  | 1,70  | 0,33  | 1,75 | 0,36 |
|                | 16,59 | 11,19 | 6,29 | 5,51 | 4,09 | 0,67  | 1,78  | 0,33  | 1,76 | 0,35 |
|                | 12,50 | 8,71  | 4,80 | 4,09 | 2,92 | 0,70  | 1,81  | 0,33  | 1,70 | 0,39 |
|                | 9,58  | 6,96  | 3,61 | 3,36 | 2,15 | 0,73  | 1,93  | 0,35  | 1,66 | 0,40 |
|                | 7,42  | 5,33  | 2,61 | 2,80 | 1,51 | 0,72  | 2,04  | 0,38  | 1,58 | 0,42 |
|                | 5,91  | 3,90  | 2,01 | 2,30 | 1,32 | 0,66  | 1,94  | 0,39  | 1,66 | 0,35 |
|                | 4,59  | 3,03  | 1,59 | 1,91 | 0,98 | 0,66  | 1,91  | 0,42  | 1,61 | 0,39 |
|                | 3,62  | 2,23  | 1,09 | 1,66 | 0,81 | 0,62  | 2,04  | 0,46  | 1,66 | 0,26 |
|                | 2,81  | 1,69  | 0,86 | 1,32 | 0,59 | 0,60  | 1,96  | 0,47  | 1,61 | 0,31 |
|                | 2,22  | 1,23  | 0,63 | 1,06 | 0,50 | 0,56  | 1,97  | 0,48  | 1,67 | 0,20 |
|                | 1,71  | 0,95  | 0,53 | 0,76 | 0,41 | 0,55  | 1,78  | 0,44  | 1,73 | 0,22 |
|                | 1,30  | 0,73  | 0,43 | 0,49 | 0,36 | 0,56  | 1,70  | 0,37  | 1,91 | 0,16 |

**Ornament:** Das Ornament ist am besten an Exemplar MB.C.8006 zu erkennen (Abb. 17B). Es besteht hier, bei einem Gehäusedurchmesser von 32 mm, aus recht groben, schwach bikonvex verlaufenden Anwachsstreifen mit seichtem Lateralsinus und erheblich tieferem Externsinus. Die Anwachsstreifen sind am Nabel schwach gezähnelt und gebündelt; hier bilden sie etwa 30 schwache, kurze Rippchen auf der letzten Windung. Diese Nabelknoten werden auf der letzten erhaltenen Windung erheblich schwächer; der Einblick in die Innenwindungen zeigt, dass frühere Windungen noch stärker berippt sind.

**Lobenlinie**: Die Lobenlinie des keinen Holotypus BB.P223.WB zeigt einen für Gastrioceraten typischen Verlauf (Abb. 18B). Der E1-Lobus ist gerundet und der Mediansattel erreicht nicht die halbe Höhe des breit gerundeten Ventrolateralsattels. Der Adventivlobus ist V-förmig und spitz.

**Beziehungen:** PATTEISKY (1965) trennte die "viel schmalere" Unterart *G. carbonarium angustum* von der Nominat-Unterart ab. *Gastrioceras angustum* nimmt hinsichtlich der Gehäusegestalt und der Ornamentierung eine Stellung zwischen *G. subcrenatum* (FRECH, 1899) und *G. carbonarium* (VON BUCH, 1832) ein. Von ersterer unterscheidet sie sich durch das breitere Gehäuse und durch die kräftigeren Nabelrippchen, den weiteren Nabel und die deutlich stärkeren Nabelknoten. *G. carbonarium* ist breiter als *G. angustum*, hat einen weiteren Nabel und eine länger andauernde Präsenz von Nabelknoten.

**Stratigraphische und geographische Verbreitung:** Im Ruhrkarbon kommt die Art im unteren sowie im oberen marinen Horizont über Flöz Sarnsbank 2 vor (G2-Stufe; basales Westfalium); sie ist aus dem Rheinischen Schiefergebirge und Südportugal bekannt.

#### Gastrioceras subcrenatum (FRECH, 1899)

Abb. 19, 20

- 1830 Ammonites subcrenatus (nomen nudum).- HOENINGHAUS: 239.
- 1831 Ammonites subcrenatus (nomen nudum).– MÜNSTER: 371.
- 1863 Goniatites Listeri.- ROEMER: 580, Taf. 15, Fig. 2.
- 1884 Ammonites subcrenatus.- BEYRICH: 214.
- pt. 1897 Gastrioceras carbonarium.- FOORD & CRICK: 229, Abb. 110a, b (non Fig. 110c).
- \*pt. 1899 Glyphioceras subcrenatum FRECH: Taf. 46b, Fig. 5b (non, Fig. 5a,c,d).
  - 1914 Gastrioceras Langenbrahmi WEDEKIND: 17, Taf. 1, Fig. 4, 5, Abb. 6a.
  - 1914 Gastrioceras Langenbrahmi var. crassa WEDEKIND: 17, Taf. 1, Fig. 6, Abb. 6b.
  - 1918 Gastrioceras Langenbrahmi.- WEDEKIND: 159, Abb. 53c.
  - 1924 Gastrioceras carbonarium = subcrenatum.– С. SCHMIDT: 379, Taf. 16, Fig. 2a, c, Taf. 17, Fig. 2a, f, ?g.
  - 1925 Gastrioceras subcrenatum.– Н. Schmidt: 595, Taf. 22, Fig. 11.
  - 1929 Gastrioceras subcrenatum.- H. SCHMIDT: 72, Taf. 19, Fig. 17, 18.
  - 1931 Gastrioceras subcrenatum.- DELÉPINE in DE DORLODOT & DELÉPINE: 74, Taf. 4, Fig. 4-7.
  - 1938 Gastrioceras subcrenatum.- DEMANET & VAN STRAELEN: 183, Abb. 59.
- pt. 1943 Gastrioceras listeri.- DEMANET: 136, Taf. 8, Fig. 14-16.
- ? 1945 *Gastrioceras subcrenatum.* Dorsman: 72.
  - 1956 Gastrioceras subcrenatum.- NEVILL: 7, Taf. 1, Fig. 8, 9.
  - 1959 Gastrioceras? subcrenatum.– PATTEISKY: 36.
- ? 1961 Gastrioceras subcrenatum.- BOUCKAERT: Fig. 3.
  - 1962 Gastrioceras subcrenatum.- RAMSBOTTOM & CALVER: 574, Taf. 15, Fig. 4, 5.
  - 1964 Agastrioceras subcrenatum.- PATTEISKY: 648, Taf. 15, Fig. 4-6, 14.

- 1964 Gastrioceras subcrenatum.- RAMSBOTTOM & CALVER: XLV.
- 1965 Agastrioceras subcrenatum.- PATTEISKY: 14, Taf. 3, Fig. 14–17, Taf. 4, Fig. 1–16.
- 1965 Agastrioceras subcrenatum f. latestriatum PATTEISKY: 15, Taf. 4, Fig. 19, 20.
- 1966 Agastrioceras subcrenatum.– Böger: Taf. 2, Fig. 6.
- 1986 Gastrioceras subcrenatum.- KOREJWO: Taf. 34, Fig. 3-6.

**Neotypus:** Die von FRECH (1899, Taf. 46b, Fig. 5b) gelieferte Abbildung (siehe PATTEISKY 1964) konnte bisher keinem diskreten Exemplar zugeordnet werden. Es soll von Werden an der Ruhr stammen. Hier wird ein Neotypus (MB.C.12838.1; coll OTTO) bestimmt. Es ist hier in Abb. 19A abgebildet. **Locus typicus/ Stratum typicum:** Grube Hoffnung bei Essen-Werden; basale G2-Stufe. **Material:** 



 Abb. 19: Gastrioceras subcrenatum (FRECH, 1899). A – Neotypus MB.C.12838.1 von Essen-Werden; x 2,5. B – Reproduktion der von FRECH (1899, Taf. 46b, Fig. 5b) publizierten Illustration; x 1,5. C – Exemplar RE.220.A0267 von Essen-Rellinghausen; x 1,5. D – Exemplar RE.220.A0267/2 von Essen-Rellinghausen; x 1,5. E – Exemplar MB.C.12830.1 von Essen-Rellinghausen; x 1,5. F – Exemplar MB.C.12830.2; x 1,5 von Essen-Rellinghausen.

Essen-Werden, Grube Hoffnung: ein vollständiges Exemplar mit 19 mm Durchmesser (Neotypus MB.C.12838.1) und mehre Fragmente (coll. OTTO);

Essen-Rellinghausen, Zeche Langenbrahm: vier Exemplare zwischen 11 und 36 mm Dm (RE.220.A0876, RE.220.A0877, RE.220.A0267, RE.220.A0267/2) sowie 12 kleine Exemplare;

Essen-Werden, Kleinzeche Pauline: zwei Exemplare (RE.220.A0242/1, RE.220.A0242/2); Bochum-Dahlhausen, Zeche Dahlhauser Tiefbau: ein Querschnitts-Exemplar (BB.P226WB; coll. GRäwe);

Essen-Rellinghausen: eine Toneisensteinknolle mit etwa 40 Individuen aller Größenstadien zwischen wenigen mm und 34 mm Durchmesser (MB.C.12830.1–42; coll. BOTTKE).

**Diagnose:** *Gastrioceras* mit dünnpachyconischem Gehäuse bei 15 mm Dm (Wb/Dm = 0,60–0,65) und dickscheibenförmigem Gehäuse bei 30 mm (Wb/Dm = 0,45–0,50). Nabel mäßig weit (Nw/Dm = 0,30–0,35 zwischen 10 und 30 mm Dm). Nabelkante in der Jugend gerundet, ab etwa 15 mm Gehäusedurchmesser bildet sich eine deutliche Nabelkante. Ornamentierung mit 30 kurzen, sehr schwachen Rippen auf der Nabelkante und feinen bikonvexen Anwachsstreifen mit tiefem Externsinus. Ohne Spiralstreifen, gezähnelte Anwachstreifen im Nabelbereich.

### Beschreibung:



Abb. 20: Gastrioceras subcrenatum (FRECH, 1899) von Essen-Rellinghausen. A – Verlauf der Anwachsstreifen bei Exemplar RE.220.A0267 bei 35,2 mm Dm, 16,0 mm Wb, 12,8 mm Wh; x 5. B – Gehäusequerschnitt von Exemplar BB.P226.WB; x 2,5. C – Gehäusequerschnitt von Exemplar RE.220.A0876; x 2,5. D – Lobenlinie von Exemplar MB.C.12830.1, bei 12,5 mm Wb, 7,7 mm Wh; x 5. E, F – biometrische Analyse der Gehäuseontogenese.

**Gehäuse:** Der Querschnitt von Exemplar BB.P226WB zeigt die Entwicklung der Gehäusegeometrie von 1,5 bis fast 33 mm Durchmesser (Abb. 20B). Bis etwa 11 mm Dm sind die Windungen im Querschnitt nierenförmig und niedrigmündig; bis zu diesem Stadium sind nur wenig ontogenetische Veränderungen zu beobachten. Danach wird das Gehäuse flacher; es nimmt von einem Verhältnis Wb/Dm = 0,67 bei 11 mm Dm auf ein Verhältnis von 0,50 bei 33 mm Dm ab (Abb. 20E, F). Ab 25 mm Dm ist eine deutliche Nabelkante zu erkennen.

MB.C.12830.1 von Essen-Rellinghausen mit 33 mm Gehäusedurchmesser ist das am besten erhaltene vorliegende Exemplar (Abb. 19E). Es ist dickscheibenförmig (Wb/Dm = 0,52) mit mäßig weitem Nabel (Nw/Dm = 0,32). Flanken und Externseite sind breit gerundet; der Nabel ist begrenzt von einer recht scharfen Kante, von welcher die abgeflachte Nabelwand steil abfällt.

Der Neotypus (MB.C.12838.1) hat 19 mm Gehäusedurchmesser und ist dabei dickscheibenförmig (Wb/Dm = 0,59) mit recht engem Nabel (Nw/Dm = 0,30). Das Exemplar bildet gerade eine kantige Nabelbegrenzung aus und entspricht damit dem Querschnitt BB.P226WB. Flanken und Externseite sind breit gerundet.

|                | Dm    | Wb    | Wh    | Nw    | Mh   | Wb/Dm | Wb/Wh | Nw/Dm | WER  | IZR  |
|----------------|-------|-------|-------|-------|------|-------|-------|-------|------|------|
| RE.220.A0267/2 | 37,7  | 19,2  | 13,7  | 13    | 9,5  | 0,51  | 1,40  | 0,34  | 1,79 | 0,31 |
| RE.220.A0267   | 35,2  | 16    | 12,8  | 12,6  | 9,4  | 0,45  | 1,25  | 0,36  | 1,86 | 0,27 |
| MB.C.12830.1   | 33,5  | 17,4  | 12,9  | 10,6  | 8,2  | 0,52  | 1,35  | 0,32  | 1,75 | 0,36 |
| MB.C.12830.2   | 29,2  | 16,1  | 11,3  | 9,4   | 7,2  | 0,55  | 1,43  | 0,32  | 1,76 | 0,36 |
| MB.C.12838.1   | 19,4  | 11,5  | 7,4   | 5,8   | 5,1  | 0,59  | 1,55  | 0,30  | 1,84 | 0,36 |
| RE.220.A0876   | 26,6  | 15,1  | 10,4  | 8,7   | 6,8  | 0,57  | 1,45  | 0,33  | 1,80 | 0,35 |
|                | 19,7  | 12,1  | 7,5   | 6,5   | 4,6  | 0,61  | 1,61  | 0,33  | 1,70 | 0,39 |
| BB.P226.WB     | 32,76 | 16,25 | 12,83 | 10,70 | 8,03 | 0,50  | 1,27  | 0,33  | 1,75 | 0,37 |
|                | 24,74 | 13,66 | 9,24  | 7,82  | 5,54 | 0,55  | 1,48  | 0,32  | 1,66 | 0,40 |
|                | 19,19 | 10,98 | 7,68  | 5,60  | 4,65 | 0,57  | 1,43  | 0,29  | 1,74 | 0,39 |
|                | 14,54 | 9,09  | 5,92  | 4,35  | 3,57 | 0,63  | 1,54  | 0,30  | 1,76 | 0,40 |
|                | 10,98 | 7,31  | 4,27  | 3,58  | 2,61 | 0,67  | 1,71  | 0,33  | 1,72 | 0,39 |
|                | 8,37  | 5,96  | 3,12  | 2,92  | 1,82 | 0,71  | 1,91  | 0,35  | 1,63 | 0,42 |
|                | 6,55  | 4,53  | 2,33  | 2,26  | 1,42 | 0,69  | 1,95  | 0,34  | 1,63 | 0,39 |
|                | 5,14  | 3,68  | 1,97  | 1,92  | 1,13 | 0,72  | 1,87  | 0,37  | 1,64 | 0,43 |
|                | 4,01  | 2,69  | 1,25  | 1,63  | 0,84 | 0,67  | 2,15  | 0,41  | 1,60 | 0,33 |
|                | 3,17  | 2,17  | 1,13  | 1,36  | 0,74 | 0,68  | 1,92  | 0,43  | 1,71 | 0,34 |
|                | 2,42  | 1,52  | 0,68  | 1,15  | 0,52 | 0,63  | 2,23  | 0,48  | 1,63 | 0,23 |
|                | 1,90  | 1,06  | 0,59  | 0,93  | 0,41 | 0,56  | 1,80  | 0,49  | 1,62 | 0,31 |
|                | 1     | 1     | 1 -   | 1     |      |       |       |       |      | 1 -  |

#### Abmessungen in mm und Gehäuse-Proportionen:

**Ornament:** Bei 11 mm Dm (Exemplar RE.220.A0242/1) ist die Nabelkante mit Knötchen besetzt; der Steinkern zeigt eine geradlinig verlaufende Einschnürung.

Größere Exemplare besitzen dann keine Nabelknoten mehr. Die gut erhaltenen Exemplare RE.220.A0267 und MB.C.2031.1 (19C, E, Abb. 20A,) zeigen lediglich feine, in unregelmäßigen Abständen angeordnete Anwachsstreifen (Abstand voneinander meist weniger als 0,1 mm), die in der Umgebung der Nabelkante fein gezähnelt sind, ohne aber eine Spiralstreifung zu erzeugen. Sie verlaufen rursiradiat mit Lateralsinus, schwachem Ventrolateralvorsprung und tiefem Externsinus. Der Steinkern hat eine durch innere, in kurzen Abständen verstärkte Schalenverdickungen gewellte Oberfläche.

**Lobenlinie**: Exemplar MB.C.12830.1 zeigt die Lobenlinie bei einem Gehäusedurchmesser von ungefähr 23 mm (Abb. 20D). Es ist ein fast parallelwandiger, schwach ausgebauchter Externlobus mit engen Sekundärloben vorhanden; der Mediansattel hat fast genau die halbe Höhe des Externlobus. Auf der Gehäuseflanke folgen ein breit gerundeter Ventrolateralsattel und ein V-förmiger, schwach asymmetrischer Adventivlobus.

**Bemerkungen:** Für *Gastrioceras subcrenatum* wurde vielfach SCHLOTHEIM (1820) als Autor genannt. In dieser Arbeit gibt es jedoch keinen Hinweis auf die Art; möglicherweise trug Material aus der Sammlung SCHLOTHEIM lediglich eine solche Bezeichnung. Die taxonomische Problematik der Art wurde von CALVER, PATTEISKY und RAMSBOTTOM geklärt (PATTEISKY 1964; RAMSBOTTOM & CALVER 1964); im Einvernehmen mit der Subkommission für Karbonstratigraphie wurde FRECH (1899) als Autor der Art vorgeschlagen und das in dieser Arbeit in Figur 5b auf Tafel 46b abgebildete Exemplar als Typus designiert. Über den Verbleib dieses Exemplars konnte allerdings nichts mitgeteilt werden. Zur Erhaltung der Stabilität der stratigraphisch wichtigen Art wird hier ein Neotypus aus der historischen Sammlung Otto bestimmt, die bereits zu Beginn des 19. Jahrhunderts zusammengetragen wurde. Bei diesem Exemplar ist zumindest gewährleistet, dass es von der ursprünglichen Typuslokalität stammt und dass es zu einer Zeit gesammelt wurde, in welcher auch von Buch und von Schlotheim ihr Material erhielten. **Beziehungen:** *G. subcrenatum* zeigt Äbnlichkeiten mit *Gastrioceras angustum* und *G. carbonatium* bat

**Beziehungen:** *G. subcrenatum* zeigt Ähnlichkeiten mit *Gastrioceras angustum* und *G. carbonarium*, hat aber ein schmaleres Gehäuse mit engerem Nabel und unterscheidet sich durch den Verlust der Nabelrippen in erheblich früherem ontogenetischen Stadium. *Gastrioceras adleri* (PATTEISKY, 1965) hat ein sehr ähnliches Gehäuse, besitzt aber sehr kräftige, rippchenartige Anwachsstreifen.

Stratigraphische und geographische Verbreitung: Im Ruhrkarbon kommt die Art in den Wittener Schichten im marinen Horizont über dem Sarnsbank 2-Flöz vor (G2a). Die Art ist offenbar weniger weit verbreitet als andere Arten von *Gastrioceras*; sie wurde nur selten auf den Britischen Inseln gefunden und fehlt möglicherweise in der Südportugiesischen Zone.

*Gastrioceras adleri* (PATTEISKY 1965) Abb. 21, 22





Abb. 22: Gastrioceras adleri (PATTEISKY, 1965) von Essen-Kupferdreh. A – Verlauf der Anwachsstreifen bei Exemplar BB.P75a.WB, bei 17,3 mm Dm, 13,0 mm Wb, 6,6 mm Wh; x 5. B – Verlauf der Anwachsstreifen bei Exemplar BB.P69c.WB, bei 29,0 mm Dm, 18,0 mm Wb, 10,2 mm Wh; x 3. C – Gehäusequerschnitt von Exemplar BB.P69c.WB; x 2,5.

- 1929 Gastrioceras circumnodosum.- H. SCHMIDT: 73, Taf. 19, Fig. 23, 24.
- 1965 Agastrioceras adleri PATTEISKY: 16, Taf. 5, Fig. 5–11.
- 1965 Gastrioceras circumnodosum.– PATTEISKY: 21, Taf. 8, Fig. 7, 10.

Holotypus: BB.P110WB; abgebildet von PATTEISKY (1965: pl.5 fig.5).

Locus typicus/ Stratum typicum: Essen-Kupferdreh, Steinbruch bei Zeche Adler; erstes marines Band über dem Finefrau-Nebenbank-Horizont (G2a).

#### Material:

Essen-Kupferdreh, Steinbruch bei Zeche Adler: neben dem flachgedrückten Typus-Material liegen noch zwei körperlich erhaltene, von PATTEISKY als *Gastrioceras circumnodosum* bezeichnete, vollkörperlich mit Schalenresten erhaltene Exemplare von der Typus-Lokalität vor: BB.P69c.WB und BB.P75a.WB.

**Diagnose:** *Gastrioceras* mit dünnpachyconischem Gehäuse bei 15 mm Dm (Wb/Dm = 0,60–0,65) und dickscheibenförmigem Gehäuse bei 30 mm (Wb/Dm = 0,55–0,60). Nabel mäßig weit (Nw/Dm = 0,35 bei 30 mm Dm). Nabelkante gerundet. Ornamentierung mit 30 kurzen, sehr schwachen Rippen auf der Nabelkante und kräftigen, rippchenartig verstärkten, rursiradiat bikonvexen Anwachsstreifen mit seichtem Externsinus. Ohne Spiralstreifen.

### Beschreibung:

**Gehäuse:** Das bereits von PATTEISKY durchgeschnittene Exemplar BB.P69c.WB zeigt lediglich die letzte Windung im Querschnitt (Abb. 22C). Bei 32 mm Durchmesser ist das Gehäuse dickscheibenförmig (Wb/Dm = 0,58) mit nierenförmigem Windungsquerschnitt und breit gerundeter Externseite und gerundeter Nabelkante. Der Nabel hat eine Weite von 0,36 des Gehäusedurchmessers.

### Abmessungen in mm und Gehäuse-Proportionen:

| -          |      |      |     |      |     |       |       |       |      |      |
|------------|------|------|-----|------|-----|-------|-------|-------|------|------|
|            | Dm   | Wb   | Wh  | Nw   | Mh  | Wb/Dm | Wb/Wh | Nw/Dm | WER  | IZR  |
| BB.P69c.WB | 31,9 | 18,5 | 12  | 11,4 | 8,7 | 0,58  | 1,54  | 0,36  | 1,89 | 0,28 |
| BB.P75a.WB | 17,3 | 13,0 | 6,6 | 6,5  | -   | 0,75  | 1,97  | 0,38  | -    | -    |

**Ornament:** Das kleinere Exemplar BB.P75a.WB zeigt bei 17 mm Dm eine aus feinen, etwas rauen Anwachsstreifen sowie schwachen, zahlreichen Nabelrippchen (etwa 40 pro Umgang) bestehende Ornamentierung. Die Anwachsstreifen verlaufen bikonvex, aber fast geradlinig mit weitem Externsinus. Auf der Mitte der Externseite stehen sie in fast regelmäßigen Abständen von 0,2 mm (Abb. 22A). Zwischen den Nabelrippen sind wenige, feine Spiralstreifen zu erkennen. Die Oberfläche des Steinkerns ist schwach gewellt.

Am größeren Exemplar BB.P69c.WB sind bei ca. 26 mm Dm einige Schalenreste erhalten, welche grobe Anwachsstreifen (in Abständen von 0,3 bis 0,6 mm) mit leicht rursiradiatem, schwach bikonvexen Verlauf zeigen (Abb. 22B). Sie haben ihren Ursprung in den Nabelrippchen und entstehen aus Teilung und Neueinschaltung auf der inneren Flankenhäfte. Es sind mehr als 30 Nabelrippen vorhanden (Abb. 21). Lobenlinie: Nicht bekannt.

**Bemerkungen:** PATTEISKY erkannte nicht die Zugehörigkeit der körperlich erhaltenen Exemplare zu der von ihm aufgestellten Art "*Agastrioceras adleri*". Trotz des Unterschiedes in der Erhaltung lässt sich jedoch die artliche Zusammengehörigkeit des Materials erkennen.

**Beziehungen:** *Gastrioceras adleri* hat ein ähnliches Gehäuse wie *Gastrioceras angustum* und *Gastrioceras subcrenatum*, unterscheidet sich aber von diesen Arten durch die sehr kräftigen, rippchenartig verstärkten Anwachsstreifen. *Gastrioceras circumnodosum* (FOORD & CRICK, 1897) unterscheidet sich von *G. adleri* durch die erheblich deutlicher ausgeprägte Nabelkante.

**Stratigraphische und geographische Verbreitung:** Wittener Schichten, im ersten marinen Band über Flöz Finefrau Nebenbank (G2a); bisher nur aus dem Ruhrgebiet bekannt.

Agastrioceras Schmidt, 1938

Typus-Art: *Glyphioceras subcrenatum* var. *carinata* FRECH, 1899.

Agastrioceras carinatum (FRECH, 1899) Abb. 23, 24, 25

- 1863 Goniatites crenistria.- Ludwig: 282, Taf. 47, Fig. 1-6.
- 1899 Glyphioceras subcrenatum var. carinata FRECH: Taf. 46b, Fig. 3.
- 1924 Eumorphoceras carinatum.- С. Schmidt: 373, Taf. 14, Fig. 2, Taf. 15, Fig. 1.
- 1925 Eumorphoceras carinatum.- H. SCHMIDT: 590, Taf. 22, Fig. 4.
- 1938 Agastrioceras carinatum.– Н. Schmidt in Kukuk: 120.
- pt 1941 Gastrioceras cancellatum.- DEMANET: 282, Taf. 18, fig.10, 11.
  - 1945 Agastrioceras carinatum.- DORSMANN: 73, Taf. 11, Fig. 2.
  - 1945 Gastrioceras cancellatum.- DORSMANN: 73, Taf. 10, Fig. 10.
  - 1956 *Gastrioceras* sp. NEVILL: Taf. 1, Fig. 3.
  - 1959 Agastrioceras carinatum.- PATTEISKY: 37, Taf. 9, Fig. 14-16, Taf. 10, Fig. 1-14, Taf. 11, Fig. 27b, c, Taf. 12, Fig. 14-17, Taf. 13, Fig. 4.
  - 1962 Agastrioceras carinatum.- RAMSBOTTOM & CALVER: 574, Taf. 14, Fig. 8.
  - 1964 Agastrioceras carinatum.- PATTEISKY: 648, Taf. 1, Fig. 16.
  - 1979 Agastrioceras carinatum.– Волкоwsкi: 42, Taf. 9, Fig. 2.

**Neotypus:** Das von FRECH (1899: Taf. 46a, Fig. 3) abgebildete Exemplar sollte von Essen stammen und im Berliner Museum hinterlegt sein. Es konnte allerdings nicht eindeutig identifiziert werden. Aus der Sammlung wird Exemplar MB.C.2031.1 (Abb. 23A) als Neotypus bestimmt. Obwohl es nicht ausgeschlossen ist, dass es sich um das von FRECH abgebildete Exemplar handelt, wird wegen der Unsicherheit einer Zugehörigkeit zur Typus-Serie als Neotypus bestimmt.

Locus typicus/ Stratum typicum: Wahrscheinlich Essen, Petersgrube; untere G1-Stufe (basales Yeadonium).



Abb. 23: Agastrioceras carinatum (FRECH, 1899). A – Neotypus MB.C.2031.1 von Essen; x 1,5. B – Exemplar RE.210.A0310 von Silschede; x 1,75. C – Exemplar RE.210.A0072 von Silschede; x 1,5. D – Exemplar RE.210.A0165/9 von Silschede; x 2,25.



Abb. 24: *Agastrioceras carinatum* (FRECH, 1899). A – Exemplar RE.210.A0070 von Silschede; x 1. B – Exemplar BB.P419 von Zeche Herbede; x 1,25. C – Exemplar RE.210.A0007/2 von Silschede; x 1,5. D – Exemplar MB.C.12828.2 von Silschede; x 1,5. E – Exemplar MB.C.12828.1 von Silschede; x 1,5. F – Exemplar MB.C.12829.1 von Silschede; x 1,5.

# Material:

Silschede, nördlicher Eisenbahn-Voreinschnitt: 178 Exemplare zwischen 9 und 79 mm Dm im Ruhrland-Museum;

Silschede, nördlicher Eisenbahn-Voreinschnitt: sechs Exemplare (MB.C.12828.1–MB.C.12828.6); vermutlich Silschede, Bahneinschnitt: drei Exemplare (MB.C.12829.1–MB.C.12829.3; leg. BRÜHN); Essen, wahrscheinlich Petersgrube: fünf Exemplare (MB.C.2031.1–MB.C.2031.5), darunter der Neotypus; Zeche Herbede: drei Exemplare (zwei Hohlformen BB.419, BB.436 und ein vollkörperliches Exemplare

### BB.465a; alle coll. PATTEISKY);

Grube Kleinglück: ein Exemplar von 60 mm Dm (MB.C.2030; coll. Dannenberg).

**Diagnose:** *Agastrioceras* mit dünnpachyconischem Gehäuse bei 15 mm Dm (Wb/Dm = 0,60–0,70), dickscheibenförmgem Gehäuse bei 30 mm (Wb/Dm = 0,45–0,55) und scheibenförmgem Gehäuse bei 60 mm (Wb/Dm = 0,40–0,50). Zuschärfung der Externseite im mittleren Wachstumsstadium; im Alter mit deutlichem Kiel. Nabel mäßig weit (Nw/Dm = 0,20–0,26 zwischen 10 und 60 mm Dm). Nabelkante in der Jugend gerundet, ab etwa 15 mm Gehäusedurchmesser bildet sich eine deutliche Nabelkante. Ornamentierung bei 30 mm Dm mit schwachen kurzen Knoten auf der Nabelkante, gebündelten crenulierten und deutlich bikonvex verlaufenden Anwachsstreifen und feinen Spiralstreifen. Lobenlinie in de Jugend mit parallelwandigem Externlobus; im Alter ist der Externlobus V-förmig.

# Beschreibung:

**Gehäuse:** Über die Geometrie des Gehäuses in der Jugend und im mittleren Stadium gibt der Querschnitt von Exemplar RE.210.0165/14 Auskunft, welcher alle Windungen bis 25 mm Gehäusedurchmesser zeigt (Abb. 25B). Die innersten Windungen sind weit genabelt und scheibenförmig (Nw/Dm > 0,40 und Wb/Dm < 0,60 bei 3 mm Dm). Danach setzt verstärktes Breitenwachstum ein (Wb/Dm etwa 0,70 zwischen 5 und



Abb. 25: *Agastrioceras carinatum* (FRECH, 1899). A – Verlauf der Anwachsstreifen bei Exemplar RE.210.A0007/2 von Silschede bei 39,0 mm Dm, 18,8 mm Wb, 17,7 mm Wh; x 5. B – Gehäusequerschnitt von Exemplar RE.210.A0165/14 von Silschede; x 2,5. C – Lobenlinie von Exemplar RE.210.A0301/6 von Silschede, bei 11,6 mm Dm, 7,1 mm Wb, 4,8 mm Wh; x 6. D – Lobenlinie von Exemplar MB.C.2030 von Grube Kleinglück, bei 16,5 mm Wb, 14,0 mm Wh; x 3,5. E, F – biometrische Analyse der Gehäuseontogenese.

10 mm Dm) und die Nabelweite geht zurück (Abb. 25E, F). Auf der vorletzten erhaltenen Windung ist der Windungsquerschnitt durch gleichmäßig gerundete Flanken und Externseite gekennzeichnet; die Nabelbegrenzung ist ebenfalls gerundet. Bereits eine halbe Windung später, bei 17 mm Dm, ist eine deutliche Nabelkante vorhanden. Bei 25 mm Dm schließlich ist die Nabelwand bereits abgeflacht und steht steil; die Nabelkante ist durch eine Verdickung der Schale betont. Der Querschnitt dieser letzten sichtbaren Windung ist bereits gerundet dreieckig mit stark konvergierenden Flanken, einer lateralen Kante und einer leicht abgesetzten, schmalen Externseite.

Die Zuschärfung der Externseite geschieht langsam und bei den einzelnen Exemplaren bei unterschiedlichem Durchmesser. Bei Exemplar RE.210.A0310 beginnt sie bereits bei 25 mm Dm (Abb. 23B), aber bei Exemplar RE.210.A0007/2 erst bei etwa 30 mm. Dieses Stück besitzt eine sehr deutliche, eckige Nabelkante und eine abgeflachte steile Nabelwand. Beim Neotypus MB.C.2031.1 ist die Externseite bei 42 mm Gehäusedurchmesser zugeschärft und kielartig abgesetzt (Abb. 23A).

Zwischen 40 mm und 60 mm Durchmesser (MB.C.2030) ist der Windungsquerschnitt annähernd dreieckig mit geringfügig gewölbten, in der Nähe des Nabels leicht konkaven Flanken; die gerundete kielförmige Externseite ist ebenfalls durch eine schwach konkave Eindellung der Flanke abgesetzt.

Im Alter wird die Gehäuseform nur noch wenig verwandelt. Das große Stück RE.210.A0070 zeigt einen fast dreieckigen Windungsquerschnitt mit subacuter Externseite, wenig gewölbten Flanken, eckiger Nabelkante und flacher Nabelwand (Abb. 24A).

| J.              |       |       |       |      |      |       |       |       |      |      |
|-----------------|-------|-------|-------|------|------|-------|-------|-------|------|------|
|                 | Dm    | Wb    | Wh    | Nw   | Mh   | Wb/Dm | Wb/Wh | Nw/Dm | WER  | IZR  |
| RE.210.A0070    | 78,8  | 30,0  | 33,0  | 21,3 | -    | 0,38  | 0,91  | 0,27  | -    | -    |
| RE.210.A0207/76 | 61,0  | 29,4  | 27,5  | 14,6 | 17,0 | 0,48  | 1,07  | 0,24  | 1,92 | 0,38 |
| MB.C.2031.1     | 42,0  | 20,3  | 20,1  | 9,2  | 14,0 | 0,48  | 1,01  | 0,22  | 2,25 | 0,30 |
| MB.C.2031.2     | 41,2  | 19,4  | 19,7  | 8,8  | 13,5 | 0,47  | 0,98  | 0,21  | 2,21 | 0,31 |
| RE.210.A0007/2  | 39,4  | 19,1  | 18,0  | 10,6 | 11,2 | 0,48  | 1,06  | 0,27  | 1,95 | 0,38 |
| MB.C.12828.1    | 37,3  | 18,7  | 16,9  | 9,1  | 11,9 | 0,50  | 1,11  | 0,24  | 2,16 | 0,30 |
| RE.210.A0066/4  | 36,0  | 18,0  | 15,6  | 8,6  | 11,1 | 0,50  | 1,15  | 0,24  | 2,09 | 0,29 |
| RE.210.A0072    | 35,9  | 17,3  | 16,5  | 7,6  | 10,7 | 0,48  | 1,05  | 0,21  | 2,03 | 0,35 |
| RE.210.A0207/20 | 35,8  | 17,4  | 16,2  | 8,4  | 9,8  | 0,49  | 1,07  | 0,23  | 1,90 | 0,40 |
| RE.210.A0207/01 | 35,2  | 18,1  | 15,7  | 8,5  | 9,4  | 0,51  | 1,15  | 0,24  | 1,86 | 0,40 |
| MB.C.12828.2    | 34,9  | 17,9  | 14,9  | 8,4  | 11,2 | 0,51  | 1,20  | 0,24  | 2,17 | 0,25 |
| MB.C.12828.3    | 31,3  | 16,8  | 15,2  | 7,7  | 9,5  | 0,54  | 1,11  | 0,25  | 2,06 | 0,38 |
| RE.210.A0207/39 | 31,2  | 16,6  | 13,3  | 7,3  | 8,3  | 0,53  | 1,25  | 0,23  | 1,86 | 0,38 |
| RE.210.A0207/14 | 29,3  | 14,7  | 12,7  | 6,4  | 8,0  | 0,50  | 1,16  | 0,22  | 1,89 | 0,37 |
| RE.210.A0066/2  | 28,5  | 15,7  | 14,1  | 6,0  | 8,0  | 0,55  | 1,11  | 0,21  | 1,93 | 0,43 |
| MB.C.12829.1    | 28,0  | 14,1  | 13,4  | 5,3  | 8,8  | 0,50  | 1,05  | 0,19  | 2,13 | 0,34 |
| RE.210.A0165/13 | 27,0  | 14,0  | 12,0  | 5,6  | 8,0  | 0,52  | 1,17  | 0,21  | 2,02 | 0,33 |
| RE.210.A0165/14 | 25,18 | 15,64 | 10,98 | 6,40 | 7,44 | 0,62  | 1,42  | 0,25  | 2,01 | 0,32 |
|                 | 17,74 | 12,13 | 7,80  | 4,61 | 4,96 | 0,68  | 1,56  | 0,26  | 1,93 | 0,36 |
|                 | 12,78 | 8,61  | 5,34  | 3,24 | 2,93 | 0,67  | 1,61  | 0,25  | 1,68 | 0,45 |
|                 | 9,86  | 7,02  | 4,20  | 2,86 | 2,11 | 0,71  | 1,67  | 0,29  | 1,62 | 0,50 |
|                 | 7,75  | 5,38  | 2,79  | 2,51 | 1,80 | 0,69  | 1,93  | 0,32  | 1,69 | 0,36 |
|                 | 5,95  | 4,14  | 2,45  | 1,97 | 1,33 | 0,70  | 1,69  | 0,33  | 1,66 | 0,46 |
|                 | 4,62  | 2,93  | 1,54  | 1,73 | 0,99 | 0,63  | 1,91  | 0,37  | 1,62 | 0,35 |
|                 | 3,63  | 2,24  | 1,35  | 1,40 | 0,87 | 0,62  | 1,65  | 0,38  | 1,74 | 0,35 |
|                 | 2,75  | 1,54  | 0,88  | 1,20 | 0,70 | 0,56  | 1,74  | 0,43  | 1,80 | 0,20 |
|                 | 2,05  | 1,15  | 0,68  | 0,83 | 0,52 | 0,56  | 1,71  | 0,41  | 1,79 | 0,23 |
|                 | 1,53  | 0,93  | 0,54  | 0,60 | 0,42 | 0,61  | 1,72  | 0,39  | 1,88 | 0,23 |
|                 | 1,12  | 0,70  | 0.39  | 0,35 | 0,29 | 0.62  | 1,80  | 0.32  | 1,82 | 0,25 |

# Abmessungen in mm und Gehäuse-Proportionen:

**Ornament:** Bei 11 mm Dm (RE.210.A0301/6) besteht das Ornament aus feinen, in unregelmäßigen Abständen (drei bis vier auf 1mm) angeordneten und manchmal gebündelten Nabelrippen.

Exemplar RE.210.A0165/9 zeigt bei 20 mm ein recht gut erhaltenes Schalenornament. Auf der erhöhten Nabelkante befinden sich scharfe kurze Rippchen, welche auf der inneren Flanke bald abschwächen und als verstärkte, meist gebündelte Anwachsstreifen fortlaufen. Sie bilden einen seichten Lateralvorsprung, einen kräftigen Ventrolateralvorsprung und einen sehr tiefen Externsinus. Flanken und Externseite tragen

sehr feine Spiralstreifen, und schwach erkennbar sind Schaleneinschnürungen mit den Anwachsstreifen parallelem Verlauf. Sie sind am tiefsten auf der Externseite.

Bei 28 mm Dm (RE.210.A0310) ist das Ornament ähnlich, jedoch sind die Nabelrippchen nun sehr kurz. An ihnen sind feine, raue Anwachsstreifen gebündelt. Die Anwachstreifen sind auf der Flankenmitte deutlich gezähnelt und bewirken eine delikate, Spinnennetz-artige Spiralstreifung im Ventrolateralbereich. Hier sind die Spiralstreifen am stärksten ausgebildet und tragen eine feine Granulierung. Bei dem Exemplar sind sehr flache Schaleneinschnürungen erkennbar.

Bei größeren Exemplaren verschwindet die Spiralstreifung. Exemplar RE.210.A0419 zeigt bei etwa 40 mm Dm das recht rasche Ausdünnen der Spirallinien, bedingt durch den Rückgang der Zähnelung der Anwachsstreifen. Bei 50 mm Dm stehen die Anwachsstreifen sehr dicht (etwa 0,1 mm Abstand zueinander); sie sind etwas angeraut und zeigen denselben bikonvexen Verlauf wie die kleineren Exemplare.

Der Steinkern ist bei 35 mm Dm (RE.210.0007/2) durch verstärkte Anwachsstreifen gewellt. Schwache, in unregelmäßigen Abständen angeordnete Einschnürungen sind vorhanden. Das größte vorliegende Exemplar (RE.210.A0070) hat bei über 70 mm Dm feine raue Anwachsstreifen mit bikonvexem Verlauf. Bedingt durch eine Schalenverletzung sind die Anwachsstreifen zum Teil rückwärts gerichtet.

**Lobenlinie**: Die Lobenlinie eines kleinen Exemplars (RE.210.A0301/6) zeigt einen parallelwandigen Externlobus mit zwei lanzettförmigen Spitzen, der Ventrolateralsattel ist breit gerundet und der Adventivlobus Vförmig mit geringfügig gebogenen Flanken (Abb. 25C).

Die Alterslobenlinie (MB.C.2030) erinnert an Vertreter von *Reticuloceras*: Der breite Externlobus ist V-förmig mit relativ hohem Mediansattel, der Ventrolateralsattel ist gleichmäßig gerundet, und der Adventivlobus einfach V-förmig (Abb. 25D).

**Bemerkungen:** Der Neotypus gehört zu einer Suite von fünf Exemplaren, die hinsichtlich ihrer Herkunft nicht eindeutig etikettiert waren. Sie zeigen allerdings dieselbe Lithologie (teilweise Pyrit-Erhaltung der Wohnkammer mit schwarzem tonigem Überzug) wie ein Exemplar von *Crencelloceras crencellatum* vom Fundpunkt Petersgrube.

**Beziehungen:** Eine ähnliche Form mit ähnlichem Ornament ist *Agastrioceras clathratum* KORN, 1997, jedoch ist dort auch im Alter die Nabelkante mit Rippchen besetzt. Außerdem zeigt *Agastrioceras clathratum* noch über 40 mm Dm eine gerundete Externseite

**Stratigraphische und geographische Verbreitung:** Im Ruhrkarbon in den Sprockhöveler Schichten im marinen Hauptflöz 2-Horizont (G1a), zusammen mit *Cancelloceras crencellatum* (BISAT, 1924). Die Art ist bekannt aus dem Rheinischen Schiefergebirge, Belgien, den Niederlanden, Nordengland (Lancashire) und Irland (?).

# Danksagung

Herrn Prof. Werner BOTTKE (Münster) danke ich für die Überlassung von wichtigem Material aus seiner Sammlung. Ich bedanke mit bei folgenden Herren für die bereitwillige Ausleihe von Sammlungs-Material für die Untersuchungen: Dr. Thomas BECKER (ehemals Museum für Naturkunde, Berlin), Dr. Thilo REHREN (ehemals Bergbau-Museum, Bochum), Udo SCHEER (Ruhrland-Museum, Essen), Dr. Lothar SCHOLLMANN (Westfälisches Museum für Naturkunde, Münster) und Dr. Volker WREDE (Geologischer Dienst Nordrhein-Westfalen, Krefeld). Für die zum Teil aufwendige Präparation zahlreicher Exemplare danke ich Evelin STENzel und Markus BRINKMANN (beide Museum für Naturkunde, Berlin).

# Literatur

ANDRÄ, C.J. (1861): Goniatiten aus der Steinkohle.– Sitzungs-Berichte der Niederrheinischen Gesellschaft für Natur- und Heilkunde zu Bonn, 1860: 82: Bonn.

BISAT, W.S. (1923): *Gastrioceras cancellatum* (sp. nov.) at Meanwood, Leeds.– Transactions of the Leeds Geologists Association, 19: 47–50, Abb. 1–2; Leeds.

BISAT, W.S. (1924): The Carboniferous goniatites of the north of England and their zones.– Proceedings of the Yorkshire Geological Society, 20: 40–124, Taf. 1–10; Leeds.

BEYRICH, E. (1837): Beiträge zur Kenntniss der Versteinerungen des Rheinischen Übergangsgebirges.– 1– 44, Taf. 1–2; Berlin.

BEYRICH, E. (1884): Erläuterungen zu den Goniatiten L. v. BUCH's.– Zeitschrift der Deutschen geologischen Gesellschaft, 36, 203–219; Berlin.

- Böger, H. (1966): Die marinen Niveaus über den Flözen Schieferbank und Sarnsbank (Grenze Namur C Westfal A) im Ruhrgebiet. Fazies, Fauna und Ökologie.– Fortschritte in der Geologie von Rheinland und Westfalen, 13,1: 1–38, Abb. 1–17, Taf. 1–3; Krefeld.
- BOGOSLOVSKY, B.I., LIBROVITCH, L.S. & RUZHENCEV, V.E. (1962): Nadotryad Ammonoidea. Amonoidei. In: Osnovy Paleontologii, 5, Mollyuski: Golovonogie 1 (Ed. Yu.A. ORLov), Akademiya Nauk SSSR: 243–425, Abb. 1–187, Taf. 1–32; Moskva.
- Волкоwsкi, K. (1979): Goniatyty z karbonu Górnoslaskiego i Lubelskiego Zaglebia Wêglowego.– Biuletyn Instituty Geologicznego, 311: 5–68, Abb. 1–2, Taf. 1–11; Warszawa.
- BOUCKAERT, J. (1961): Les goniatites du Carbonifère belge. Documents pour l'Étude de la Paléontologie du Terrain Houillier: 1–9, Taf. 1–27; Bruxelles.
- BRAUCKMANN, C., KOCH, L. & KEMPER, M. (1985): Spinnentiere (Arachnida) und Insekten aus den Vorhalle-Schichten (Namurium B; Ober-Karbon) von Hagen-Vorhalle (West-Deutschland). – Geologie und Paläontologie in Westfalen, 3: 1–132, Abb. 1–57, Taf. 1–23; Münster/Westf.
- BUCH, L. VON (1832): Über die Ammoniten in den älteren Gebirgs-Schichten.– Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, Physikalische Klasse (für 1830): 135–158; Berlin.
- BUCH, L. VON (1832): Über Goniatiten.– Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, Physikalische Klasse (für 1830): 159–187, Taf. 1,2; Berlin.
- BUTCHER, N.E. & HODSON, F. (1960): A Review of the Carboniferous Goniatite Zones in Devon and Cornwall.– Palaeontology, 3 (1): 75–81, Taf. 17–19; London.
- CHALARD, J. & DAVINVAL, A. (1960): Découverte de *Reticuloceras metabilingue* WRIGHT et de *R. wrighti* Hudson au Siège de Sessevalle du Groupe de Douai des H.B.N.P.C. Annales de la Société géologique du Nord, 80: 5–10, Taf. 1; Lille.
- DAHM, H. (1966): Das marine Niveau über Flöz Finefrau Nebenbank (Obere Wittener Schichten, Westfal A) im niederrheinisch-westfälischen Steinkohlengebirge.– Fortschritte in der Geologie von Rheinland und Westfalen, 13,1: 39–124, Abb. 1–28, Tab. 1–2, Taf. 1–8; Krefeld.
- DELÉPINE, G. (1941): Les goniatites du Carbonifère du Maroc et des confins Algéro-Marocains du sud (Dinantien-Westphalien).– Protectorat État Français au Maroc, Direction générale des travaux publics, Division des Mines et Géologie, Service Géologique, notes et mémoires, 56: 1–111, Abb. 1–5, Taf. 1–8; Laval.
- DEMANET, F. (1938): La Fauna des Couches de passage du Dinantien au Namurien dans le Synclinorium de Dinant. Mémoires du Museé Royal d'Histoire Naturelle de Belgique, 84: 1–201, Abb. 1–39, Taf. 1–14; Bruxelles.
- DEMANET, F. (1941): Faune et Stratigraphie de l'Étage Namurien de la Belgique. Mémoires du Musée Royal d'Histoire Naturelle de Belgique, 97: 1–327, Abb. 1–49, Taf. 1–18; Bruxelles.
- DEMANET, F. (1943): Les horizons marins du Westphalien de la Belgique et leurs faunes.- Mémoires du Musée Royal d'Histoire Naturelle de Belgique, 101: 1–166, Abb. 1–4, Taf. 1–9; Bruxelles.
- DEMANET, F. & VAN STRAELEN, V. (1938): Faune Houillère de la Belgique.– In: RENIER, A., STOCKMANS, F., DEMA-NET, F. & VAN STRAELEN, V.: Flore et faune Houillères de la Belgique.– Museé Royal d'Histoire Naturelle de Belgique: 99–246, Abb. 28–130; Bruxelles.
- DORLODOT, J. DE & DELÉPINE, G. (1931): Faune marine du Terrain Houiller de la Belgique. Répartition stratigraphique dans la Région de Charleroi et de la Basse-Sambre.– Mémoires de l'Institut géologique de l'Université de Louvain, 6 (1): 1–112, Abb. 1–4, Taf. 1–10; Louvain.
- DORSMAN, L. (1945): The marine fauna of the Carboniferous in the Netherlands.– Mededeelingen van de Geologische Stichting, Serie C-4-3 (3): 1–101, Tab.1–10, Taf. 1–11; Maastricht.
- FOORD, A.H. & CRICK, G.C. (1897): Catalogue of the fossil Cephalopoda in the British Museum (Natural History). Part III. Containing the Bactritidae, and part of the suborder Ammonoidea.1–303, Abb. 1–145; London.
- FRECH, F. (1897–1902): Lethaea geognostica oder Beschreibung und Abbildung der für die Gebirgs-Formationen bezeichnendsten Versteinerungen. I. Theil. Lethaea palaeozoica. 2. Band. IV. – 257–452, 35 Taf., 6 Karten, 551 Abb.; Stuttgart (Schweizerbart).
- Gao, Yue-ying (1983): Class Cephalopoda.– In: Paleontological Atlas of Northwest China. Shaanxi, Gansu and Ningxia Volume. Part II. Upper Palaeozoic (edited by Xi'an Institute of Geology and Mineral Resources): 452–475, Abb. 136–165, Taf. 151–155; Beijing.
- HAHNE, C. (1929): Stratigraphisch-faunistische Untersuchungen im Flözleeren der Gegend von Hagen, Hohenlimburg, Hörde, Iserlohn und Menden. – Zeitschrift der Deutschen Geologischen Gesellschaft, 81: 313–338, Abb. 1, Taf. 12; Berlin.

- HAUG, E. (1898): Études sur les goniatites. Mémoires de la Societé Géologique de France, 18: 1–112, Tab. 1–2, 1Taf. ; Paris.
- HIND, W. (1905): Notes on the homotaxial equivalents of the beds which immediately succeed the Carboniferous Limestone in the west of Ireland.– Proceedings of the Royal Irish Acadademy., 25 (sect. B): 93– 116, Taf. 5–6; Dublin.
- HIND, W. (1918): On the distribution of the Britisch Carboniferous Goniatites, with a description of one new genus and some new species.– Geological Magazine, 5 (10): 434–450, Taf. 16; London.
- HOENINGHAUS, F.W. (1830): Versuch einer geognostischen Eintheilung seiner Versteinerung-Sammlung, nach Berathung der Herren BRONGNIART, GOLDFUSS, BRONN, CORDIER, HAUSMANN, VON LEONHARD, NOEGGERATH und DELABECHES'S Karte (Erster Theil). – Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 1830: 226–245; Heidelberg.
- House, M.R. (1985): Class Cephalopoda.– In: Murray, J.W. (Ed.): Atlas of invertebrate macrofossils.– 114– 152, Abb. 6.7.1–6.7.25, Taf. 6.7.1–6.7.127; New York.
- HUDSON, R.G.S. (1945): The Goniatite Zones of The Namurian. Geological Magazine, 82 (1): 1–9; London.
- HYATT, A. (1883–1884): Genera of fossil cephalopods. Proceedings of the Boston Society of Natural History, 22: 253–338; Boston, Mass.
- KONINCK, L.–G. DE (1844): Description des animaux fossiles qui se trouvent dans le terrain Carbonifère de la Belgique.– I–IV, 1–716, Taf. A–H, 1–60; Liège.
- Korejwo, K. (1969): Stratigraphy and palaeogeography of the Namurian in the Polish Lowland. Acta Geologica Polonica, 19 (4): 609–709, Abb. 1–6, Tab. 1–7, Taf. 1–46; Warszawa
- Korejwo, K. (1986): Biostratigraphy of the Carboniferous deposits of the Swidnik blocks (Lublin Coal Basin).– Acta Geologica Polonica, 36 (4): 337–346, Tab.1–2, Taf. 1–37; Warszawa.
- Korejwo, K. & Teller, L. (1967): Stratigrafia dolnego karbonu (górny wizen) z wiercen Sulow 1 i Lamki 1. Acta Geologica Polonica, 17 (2): 299–313, Abb. 1–3, Taf. 1–6; Warszawa.
- Korejwo, K. & Teller, L. (1968): Stratigrafia karbonu zachodniej czesci niecki lubelskiej. Acta Geologica Polonica, 18 (1): 153–177, Abb. 1–2, Taf. 1–18; Warszawa.
- KORN, D. (1997): The Palaeozoic ammonoids of the South Portuguese Zone. Memórias do Instituto Geologico e Mineiro, 33: 1–131, Abb. 1–69, Taf. 1–16; Lisboa.
- KORN, D. (2005): Cephalopoda (Kopffüßer). In: A. HENDRICKS (Ed.): Als Hagen am Äquator lag. Die Fossilien der Ziegeleigrube Hagen-Vorhalle: 68–73, Abb. 1–12; Münster.
- Кикик, P. (1938), with contributions by Breddin, H., Gothan, W., Hirmer, M., Hoffmann, E., Keller, G., Kühlwein, F.L., Oberste-Brink, K., Schmidt, H., Schröder, F., Wehrli, H., Winter, H., Wolansky, D.: Geologie des niederrheinisch-westfälischen Steinkohlengebirges: I–XVII, 1–706, Abb. 1–741, Tab.1–48, Taf. 1–14; Berlin (Springer).
- LIBROVITCH, L.S. (1939): Klass Golovonogie Cephalopoda. Otriad Ammonoidea. In: Atlas rukovodiashchikh form iskopaemykh faun SSSR, tom 5. Srednii i verkhnii otdely kamennougol'noi sistemy. – Trudy tsentralnogo nautchno-issledovatel'skogo geologo-razvedochnogo instituta (TsNIGRI): 134–141, Abb. 25– 37, Taf. 34; Leningrad.
- LIBROVITCH, L.S. (1941): Otryad Ammonoidea. In: Atlas rukovodyashchikh form iskopaemykh faun SSSR, t. IV. Nizhniy otdel kamennougol'noy sistemy. Gosgeolizdat: 137–153, Abb. 13–43, Taf. 34–40; Moskva-Leningrad.
- LIBROVITCH, L.S. (1957): O nekotorykh novykh gruppakh goniatitov iz kamennougol'nykh otlozheniy SSSR. – Ezhegodnik Vsesoyuznogo Paleontologicheskogo Obsshchestva, 16: 246–272, Abb. 1–10, Taf. 1–4; Moskva.
- Ludwig, R. (1863): Meer-Conchylien aus der productiven Steinkohlen-Formation an der Ruhr.– Palaeontographica, 10 (6): 276–291, Taf. 47–49; Cassel.
- MARTIN, W. (1809): Petrificata Derbiensia, or Figures and Descriptions of Petrifactions collected in Derbyshire. – IX+II+II, 1–28, Taf. 1–52; Wigan.
- MICHELAU, P. & PAPROTH, E. (1990): Zur Kenntnis des flözleeren Namurs zwischen Kettwig und Heiligenhaus (NW-Rand des Rheinischen Schiefergebirges).– Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 181 (1–3): 55–59; Stuttgart.
- MILLER, A.K. & OWEN, J.B. (1944): The cephalopod fauna of the Pennsylvanian Union Valley Formation of Oklahoma. Journal of Paleontology, 18 (5): 417–428, Abb. 1–4, Taf. 63–68; Tulsa, Oklahoma.
- MÜNSTER, G. GRAF ZU (1831): Über das geognostische Vorkommen der Ammoneen in Deutschland.– Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 1831: 367–375; Heidelberg.

- NEVILL, W.E. (1956): The Millstone Grit and Lower Coal Measures of the Leinster Coalfield.– Proceedings of the Royal Irish Academy. Papers read before the academy. Section B, 58: 1–11, Abb. 1, Taf. 1–5; Dublin.
- NIKOLAEVA, S.V. & KULLMANN, J. (1995): The Late Namurian genus *Cancelloceras* (Carboniferous Ammonoidea) and its distribution. – Paläontologische Zeitschrift, 69 (3/4): 353–376, Abb. 1–8, Tab. 1; Stuttgart.
- OLIVEIRA, J.T., HORN, M. & PAPROTH, E. (1979): Preliminary note on the stratigraphy of the Baixo Alentejo Flysch Group, Carboniferous of Southern Portugal and on the palaeogeographic development, compared to corresponding units in Northwest Germany.– Comunicações dos Serviços Geológicos de Portugal, 65: 151–168, Abb. 1–5, Taf. 1–4; Lisboa.
- PATTEISKY, K. (1957): Die stratigraphische Stellung der Sprockhöveler Schichten und des Flözleeren nach ihren Goniatiten-Horizonten. Bergfreiheit, 22: 515–518; Essen.
- PATTEISKY, K. (1959): Die Goniatiten im Namur des Niederrheinisch-Westfälischen Karbongebietes.– Mitteilungen der Westfälischen Berggewerkschaftskasse, 14: 1–66, Abb. 1–18, Taf. 1–14; Herne (Kartenberg).
- PATTEISKY, K. (1964): Über die Nomenklatur von *Agastrioceras subcrenatum*, *Agastrioceras langenbrahmi* und *Gastrioceras carbonarium*.– Compte Rendue Cinquième Congrès international de stratigraphie et de géologie du Carbonifère, Paris 1963, 2: 647–654, Abb. 1, Taf. 1; Paris.
- PATTEISKY, K. (1965): Die Fauna des westdeutschen Oberkarbons. IV. Die Goniatiten im Westfal des Niederrheinisch-Westfälischen Karbons.– Palaeontographica, Abt. A., 125: 1–45, Abb. 1–9, Taf. 1–9; Stuttgart.
- PHILLIPS, J. (1836): Illustrations of the geology of Yorkshire; or a description of the strata and organic remains; accompanied by a geological map, sections, and diagrams, and figures of the fossils. Part II. The Mountain Limestone District.– I–XX, 1–259, Taf. 1–25; London.
- PITINOVA, A.S. (1975): Stratigrafiya i ammonoidei Namura Tsentral'nykh Kyzylkumov i Yuzhnoy Fergany. Izdatel'stvo FAN Uzbekskoy SSR, 1974: 1–66, Abb. 1–8, 1 Tab., Taf. 1–12; Tashkent.
- POPOV, A.V. (1979): Kamennougol'nye ammonoidei Donbassa i ikh stratigraficheskoe znachenie. Vses. ord. Lenina Nauchno-Issled. Geol. Inst., 220: 1–106, Abb. 1–10, Taf. 1–12; Leningrad.
- RAMSBOTTOM, W.H.C. (1970): Some British Carboniferous goniatites of the family Anthracoceratidae. Bulletin of the Geological Survey of Great Britain, 32: 53–60, Abb. 1–3, Taf. 9; London.
- RAMSBOTTOM, W.H.C. & CALVER, M.A. (1962): Some marine horizons containing *Gastrioceras* in North West Europe. Compte Rendue Quatrième Congrès pour l'avancement des études de stratigraphie et de géologie du Carbonifère, Heerlen 1958, 3: 571–576, Abb. 1, 2, Taf. 14, 15; Maestricht.
- RAMSBOTTOM, W.H.C. & CALVER, M.A. (1964): Statement on the name *Gastrioceras subcrenatum*. Compte Rendue Cinquième Congrès international de stratigraphie et de géologie du Carbonifère, Paris 1963, 1: XLV–XLVI; Paris.
- ROEMER, F. (1863): Ueber eine marine Conchylien-Fauna im produktiven Steinkohlengebirge Oberschlesiens.– Zeitschrift der Deutschen geologischen Gesellschaft, 15: 567–606, Taf. 14–16; Berlin.
- RUAN Yiping & ZHOU Zuren (1987): Carboniferous cephalopods in Ningxia Hui autonomous region.– In: "Namurian Strata and Fossils of Ningxia, China", Nanjing University Press: 55–177, Abb. 1–78, Tab.1– 2, Taf. 1–15; Nanjing.
- RUZHENCEV, V.E. & BOGOSLOVSKAYA, M.F. (1969): Reviziya semeystva Dimorphoceratidae. Paleontologicheskiy Zhurnal, 1969 (1): 51–66, Abb. 1–4, Taf. 6; Moskva.
- RUZHENCEV, V.E. & BOGOSLOVSKAYA, M.F. (1978): Namyurskiy etap v evolyutsii ammonoidey. Pozdnenamyurskie ammonoidei.– Trudy Paleontologicheskogo Instituta Akademiya Nauk SSSR, 167: 1–336, Abb. 1– 108, Tab.1–4, Taf. 1–44; Moskva.
- SALTER, J. W. (1864): Geology of the Country around Oldham. Memoirs of the Geological Survey of Great Britain and Ireland; London.
- SANDBERGER, G. & SANDBERGER, F. (1850–1856): Die Versteinerungen des rheinischen Schichtensystems in Nassau. Mit einer kurzgefassten Geognosie dieses Gebietes und mit steter Berücksichtigung analoger Schichten anderer Länder.– I–XIV, 1–564, Taf. 1–41; Wiesbaden.
- SCHINDEWOLF, O.H. (1939): Über den Bau karbonischer Goniatiten. Paläontologische Zeitschrift, 21, 1: 42– 67, Abb. 1–15, Taf. 1; Berlin.
- SCHLOTHEIM, E.F. BARON VON (1820): Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Thier- und Pflanzenreichs der Vorwelt erläutert.– I–LXII, 1–437, Taf. 15–29; Gotha.
- SCHMIDT, C. (1924) Stratigraphisch-faunistische Untersuchungen im älteren Produktiven Carbon des Gebietes von Witten (Westfalen).– Jahrbuch der Preußischen Geologischen Landesanstalt, 44 (für 1923): 343– 395, Tab.1–5, Taf. 14–17; Berlin.

- SCHMIDT, H. (1925): Die carbonischen Goniatiten Deutschlands.– Jahrbuch der Preußischen Geologischen Landesanstalt, 45 (für 1924): 489–609, Abb. 1–3, Taf. 19–26; Berlin.
- SCHMIDT, H. (1929): Tierische Leitfossilien des Karbon.– In: GÜRICH, Georg: Leitfossilien, 6. Lief.: 1–107, Abb. 1–26, Taf. 1–23; Berlin (Borntraeger).
- Schmidt, H. (1938): Die marinen Fossilien im Oberkarbon Nordwestdeutschlands.– In: Кикик, P.: Geologie des niederrheinisch-westfälischen Steinkohlengebirges: 117–124, Abb. 104–114, Tab.12; Berlin (Springer).
- SHENG Huaibin (1987): Carboniferous ammonoids from the Jingyuan district, Gansu. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciemces, 16: 143–193, Abb. 1–29, Taf. 1–5; Beijing.
- Sмітн, J.P. (1903): The Carboniferous ammonoids of America.– U.S. Geological Survey Monographs, 42: 1–211, Taf. 1–29, Washington.
- Sowerby, J. (1812–1814): The mineral conchology of Great Britain; or coloured figures and descriptions of those remains of testaceous animals or shells, which have been preserved at various times and depths in the earth. Vol.I: 1–234, Taf. 1–102; London.
- Sowerby, J. de C. (1825): The mineral conchology of Great Britain; or coloured figures and descriptions of those remains of testaceous animals or shells, which have been preserved at various times and depths in the earth. Vol. V: 1–168, Taf. 408–503; London.
- STUBBLEFIELD, C.J. (1951): The Goniatites named in MARTIN'S "Petrificata Derbiensia, 1809".– Annals and Magazine of Natural History, including Zoology, Botany, and Geology, Ser.12, 4: 119–124, Taf. 7; London.
- WARE, W.D. (1939): The Millstone Grit of Carmarthenshire.– Proceedings of the Geologists' Association, 50: 168–204, Abb. 1–2, Taf. 14–15; London.
- WEDEKIND, R. (1914): Beiträge zur Kenntnis der oberkarbonischen Goniatiten.– Mitteilungen aus dem Museum der Stadt Essen, 1: 1–23, Abb. 1–6, Taf. 1; Essen.
- WEDEKIND, R. (1918): Die Genera der Palaeoammonoidea Goniatiten). Mit Ausschluß der Mimoceratidae, Glyphioceratidae und Prolecanitidae.– Paläontographica, 62: 85–184, Abb. 1–54, Taf. 14–22; Stuttgart.
- WRIGHT, W.B. (1926): New Goniatites from the Millstone Grit of Lancashire.– Proceedings of the Geological Survey of Great Britain, Appendix VIII (for 1925): 192–199. Abb. 24, Taf. 12; London.
- WRIGHT, W.B. (1927): The Geology of the Rossendale Anticline. Memoirs of the Geological Survey of Great Britain and Ireland, 1927: 111–130; London.